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Deligne’s Conjecture on Critical Values of L-functions

@ Motivation: Let £(s) = >°2 | n~* be the Riemann zeta function. For positive
even integers k,
+1 (27)By
2(k!)

@ General conjecture (Deligne): if L is a motivic L-function, then

L(k) € (period) - Q

at “critical values”.

@ One method to prove things about (automorphic) L-functions is to use
integral representations and properties of Eisenstein series.
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A result of Shimura

@ Let f and g be holomorphic modular forms with Fourier expansions

e}
f _ Z 27117!4 Z b 2ning
n=0

@ Define the product L-function

Theorem (Shimura)

Let f be a Hecke eigenform of weight ¢, and g a holomorphic modular form of
weight ¢, < ¢,. Then, when k is an integer with %(51 +6—-2)<s<{,

—b Lk, f x g)

T - Q(f)Q(e)
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A result of Shimura

Theorem (Shimura)
Let f be a Hecke eigenform of weight ¢, and g a holomorphic modular form of
weight ¢, < ¢,. Then, when k is an integer with %(51 +6—2)<k<{,

_o Lk, f x g)
S

@ Proof of theorem: Integral representation, control of Fourier coefficients and
properties of Eisenstein series, Maass-Shimura operators
@ Integral representation (Rankin, Selberg):

(f(2),8(2) - En(z,8)) = L(s + &1 — 1, f x g),

where E,(z, s) is real-analytic Eisenstein series of weight n = ¢; — ¢;.
@ When s =0, E,(z,0) is a holomorphic Eisenstein series of weight n. So

(f.8 En(z,0)) ~ L(6; — 1, f x g),

4

€ Q(/)Q(g)

which implies
a0 )7L — 1 f % ) € Q(N)QUg)-
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A result of Shimura

@ We have the result for the right-most critical value in Shimura’s theorem.

@ To get algebraicity results for critical values to the left of £ — 1, use
Maass-Shimura differential operators

1 n 0 )
5;1 =~ | 7 = | 6;1 = 6n r— e 6n 6n
2mi (21y * (9z> T2 OO Ont2 0

® Then E,2.(z,—71) ~ 6,(,V)E,1(z, 0) and

(frg 0 En(z,0)) ~ (f. g - Exon(z. —1)) ~ L(ty — 1 — 1, f x g).

@ Conclusion: algebraicity of 7= (f, fY7'L(t; — 1 —r, f x g)

@ Inner workings: G = g - 6,(1r)En(z, 0) is not a modular form, but integrating
against it is the same as integrating against a modular form G,. The Fourier
coefficents of Gy lie in Q(g)Q(E,(z,0)). In fact G is proportional to the
Rankin-Cohen bracket [g, E, ]
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More on Shimura’s proof

@ There is a representation theoretic perspective (Harris).

@ Let &, be the holomorphic discrete series representation of SL, with lowest
K-type C(m). Then (Vergne),

0
Ty @ 7Ty = @71'171+n+2j'
Jj=0

@ If g is weight m, then it corresponds to a vector v,, in the lowest K-type of x,;
similarly for E and v, € m,.

1 .
@ The Maass-Shimura operator is X = 3 C _ll) € shc.

@ Gy is the projection of v, ® X"v,, 10 s n+2;-
@ In this case, one can calculate an explicit formula for G.
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Outline for remainder of talk

@ Shimura’s method has been expanded and generalized to many higher rank
situations, e.g. standard L-function of Siegel modular forms (Harris,
Horinaga-Pitale-Saha-Schmidt) and spin L-function of GSp,
(Eischen-Rosso-Shah).

@ We will describe an application of the technique to a non-holomorphic
setting, quaternionic modular forms (Gan-Gross-Savin, Pollack).

@ There is a class of groups that, unlike SL; or Sp,,, don’t necessarily have
holomorphic discrete series representations. However they have quaternionic
discrete series (Gross-Wallach).

@ Examples: SU(2,n), G,,Spin(4,4), F4, E¢, E7, Es.

o We will:

@ Describe an integral representation of an L-function that is amenable to
quaternionic data;

@ Review the ingredients necessary to prove algebraicity results;

© Focus on describing an analog of Maass-Shimura operators for quaternionic
modular forms;

@ I there is time at the end, more about the arithmeticity of quaternionic Eisenstein
series.

Bryan Hu October 28, 2025 7132



Outline for remainder of talk

@ Hundley found an integral representation for the adjoint L-function of
SU(2,1). It relies on an embedding SU(2, 1) — G,.

@ Let IT be a cuspidal automorphic representation of SU(2, 1), quaternionic of
weight ¢ at infinity. Let ¢ € I1.

@ Let E,(g, s) be a certain degenerate Eisenstein series on G,. Then,

{p,E((g,s)) ~ L(s — 1,11, Ad).

@ If s = ¢+ 1, then E;(g, s = ¢ + 1) is a quaternionic modular form. At the
same time, ¢ is the right-most critical value of L(s,IT, Ad).
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Algebraicity Results

@ Ingredient 1, Integral representation: v/
@ Ingredient 2, Control of Fourier coefficients / properties of Eisenstein series:
When s = £+ 1, then E;(g,s = €+ 1) is a QMF.

Theorem (ongoing joint work with J. Johnson-Leung, F. McGlade, A.
Pollack, M. Roy)

The degenerate quaternionic Heisenberg Eisenstein series on G, (and
Bs, Dy, F4, Eg, E7, Eg) can be normalized to have algebraic Fourier coefficients.

@ Cook these up: taking an eigenform ¢ € I1
L(6,TLAd)

————en” - Q).

(o) )

@ To get algebraicity results for critical values to the left, we need Ingredient 3,
Differential Operators.
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Exceptional Maass-Shimura Operators

Theorem (H.)
Let F be a QMF on G = G, of weight n. For any integers r = 0 and
me [r] ={—r,—r+2,...,r — 2,r}, there is a differential operator D7, such that:
° f= (D}, F)luisaQMFonH = SU(2,1) of weight (n + %,m).
@ The Fourier coefficients of f are Q(i)-linear combinations of the Fourier
coefficients of F.

@ We will discuss how to find explicit recurrence formulas for the
“highest-weight” part of Dy .

@ We need these formulas to prove the relationship between Fourier
coefficients.

@ Applying these operators to quaternionic Eisenstein series on G = G, allows
us to access the critical values of L(s,II, Ad).

@ For the application, we only really need 2 ;. However everything is proved
by induction and the stronger statement are necessary.
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Group Theory

@ The split octonions © over Q, for example as defined by the Cayley-Dickson
construction:

© = {(x,y) : x,y€ B= M(Q)}.
@ Let G = G, be the automorphism group of ®.

@ If v € ® has squarefree norm D > 0, then H = Stabg(v) is a subgroup of type
SU(2,1).

@ In more detail, Q(v) = Q(+/—D) and the orthogonal complement of Q(v) in ®
is a 3-dimensional Q(v) Hermitian space.

@ For convenience, let v = ((é 8> , (8 _01)> so that Q(v) = Q(i) and

H — G is in “good position”.
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More group theory

@ The maximal compact subgroups:

Ky := SU(2)"" x U(1)/us = SU(2)"" x SU(2)™" /uy =: K¢

@ The Cartan decomposition: Let g be the complexified Lie algebra of G = G».

Then
g = (Sllzong P 5I;hort) &) D

where p = V;"“g @ Sym® (Vshrt) as a representation of K.
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Quaternionic Modular Forms

@ Letn > 1. There is a (limit of) discrete series representation #$ of G = G,
with lowest KG type Vn — Sym (Vlong) =1

Definition (Gan-Gross-Savin, A. Pollack)

A quaternionic modular form (QMF) on G = G, of weight n is a smooth function
F:G(Q)\G(A) — V) satisfying:

Q F(yg) = D(g) forally € G»(Q) and g € G2(A)

Q F(gk) =k~ '®(g) for all k € Kg and g € G2 (A)

@ D,F = 0 for a certain differential operator D,

@ One can analogously make a definition for QMFs on H = SU(2, 1). These
are associated to quaternionic (i. e “large” or “generic”) nonholomorphic
discrete series representations 7r1 1. . Of H, with lowest K-type

Sym2n+r( 10“%)81@( )
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On Discrete Series

The representation 7% has K-type decomposition

[o0]

(‘D 2n+r long) = Sym (Sym (sthort))_
r=0

The representation 7T”H +r.n Nas Ky-type decomposition

(SIS

o sm @Symz”“”(‘/l”"g) (Sym’(C(=1) @ C(1)) ® C(m)).

j=0

Theorem (H. Y. Loke)

For a nonnegative integer r, let [r] := {—r,—r +2,...,r — 2,r}. Then, as
representations of H,

G|H_@@nn+ m*

r=0 me[r]
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On Discrete series
The representation 7% has K-type decomposition

o0
nf = @ Sym2"+’(Vé”"g) . Symr(symS(Vshort)).
r=0

@ By Loke’s restriction theorem, there exists a unique line L}, in Sym" (V) so
that
Sym> (V") m L, < Sym** (Vi) m Sym’ (Vi)
is the lowest Ky-type of 77, in 7{|n.
5
@ This tells us that D7 is

rim
: ~Nr
PrOJSymM,(V;mg)IZ 1, © D,

where N
D'F = ZX,-F ® X,

l

@ In order to prove any relationship between Fourier coefficients, we want to
make this effective, i.e. pin down L, explicitly.
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On Discrete Series

The representation 7% has K-type decomposition

0
(_D 2n+r long) = Sym (Sym (sthort))_
r=0

@ Goal: Find explicit formulas for elements D7, € U(p) that take x*" in the
lowest Kq-type Sym® (Vo) m 1 of 28 to to x2"*" in the lowest Ky type of
H
T .
n+ E,m

@ Let £}, be a (suitably normalized) basis element for L. We can prove that

(D} F. X m e, = D, (F,x".

Recall that p = Véong = Sym3(V§hort)_
To move between Kg-types: use elements of p” < U(g).

More precisely, we find elements D}, € C[h_3,h_y, hi, h3] (whose action on

x*" is well-defined, e.g. by PBW theorem).
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The Highest Weight Operators

We are starting with a fix weight n > 1. Define, for r > 0 and
mer]:={-r—r+2,....,r—2,r},
1 (Gn+r—-m—4)(r—m-2)

oA =—=
i 32n4+r—-m—4)2n+r—m—2)
o B = 1 (@Gn+r+m=2)Bn+r—=2)n+r—1)(r+m)
9 Qndr+m)(2ndr+m—2)2n+r—1)(2n+r —2)
° El = A",
Definition

Define recursively Dy, = 1,D, = h;,D| _|, = h_4, and
) D’rl’ =h_ lDr L1 =4 Aﬁmh,3D,,1,m+3 T Bﬁmh3l’l,3D;’72’m form < r.
o Df,r = thrfl,mfl ar EZrhSDr—l,m—3

Bryan Hu October 28, 2025

18/32



A H
ST . .

Supt (590 - ",

@ Recall that
@Sym long ) ® Sym/ (Sym? (V3"o)).

@ The first row depicts j = 0, i.e. Symz”(V;‘)“g) =1

o The second row depics j = 1, i.e. Sym**! (V,") @ Sym?(V3™™). It looks like
there are parts missing; these are the things that come from higher Ky-types
of ﬂnHO.

Bryan Hu October 28, 2025 19/32



L - -
>
T .2
nk 7., ™

D:l,m = h—lD:Ll,m+1 + A;',mh_3Dr_1’m+3 + Bﬁ,mh3h_3Df72’m
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The Highest Weight Operators

1 (Gn+r—m—4)(r—m-2)

@A =—=
i 32n4+r—-m—4)2n+r—m—2)
o B m 1 (@Gn+r+m=2)Bn+r—=2)n+r—1)(r+m)
T 9Qndr+m)(2ndr+m—2)2n+r—1)(2n+r —2)
o Bl - AL,

Theorem (H.)

Let x*" be a highest-weight vector in the lowest K-type of n5. The vector D}, x*"

is a highest-weight vector in the lowest Ky -type of n! i S 7%1y.

@ In order to motivate the proof, and the formulas for D?,,, we describe an
algorithm to explicitly compute Dy, for any n, r, m.
@ Key: the Casimir element Qg acts on nnHJri ., asascalar 47,
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Algorithm

@ Start with v = x*" in the lowest K-type.
e D/, is alinear combination of 1% ;h” | h{hS with a + b + ¢ +d = r and
—3a—b+c+3d=m. Let

X = ZRa,b,c,d : ha_’ihb—lhihg

be a general linear combination of such elements.
@ Calculate

(QHX — XQH)V = (Z Su,b,c,d ' hi3h’ilhjh§’) v,

where each S, .4 is @ Q-linear combination of all the R’s.
@ Linear algebra problem: Find R, .4 S0 that

(QHX — XQH)V = (/l;l’m — /lg’())XV.

@ Then QyXv = A7, Xv and we can set D}, to (some normalization of) X.
Done!

Remark

This computation boils down to the commutators [Qy, h* | hS]. Inspecting these is
how one can “guess” the shape of the recurrence formulas for D7,
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The real theorem statement

@ To prove that

Dn V_(h lDr 1m+1+Armh 3Dr 1m+3+Brmh’%h 3Dr Zm)

rm

is in the correct piece of Sym>"+' (V") m Sym’ (V3"""), one computes the
commutator

2 1 2
[Qy,h_l] = /’1_1 <§ - §h\' + /’lu) + 2d_]eu - §h_365.

@ The only problematic term is e;. Since e, - v = 0, we need to understand
[eS’ D;l,m]
@ In the same vein, we need to understand [f;, D}, ].
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The real theorem statement

1 (Gn+r—m—4)(r—m-2)

@A =—=
i 32n4+r—-m—4)2n+r—m—2)
o B = 1 (@n+r+m—-2)Bn+r—-2)n+r—1)(r+m)
T 9Qndr+m)(2ndr+m—2)2n+r—1)(2n+r —2)
o Bl - AL,

Theorem (H.)

Let x*" be a highest-weight vector in the lowest K-type of n5. The vector D}, x*"

is a highest-weight vector in the lowest Ky-type of n”!, , < 7 |p.
£,
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The real theorem statement

noo._ _ _
0 A, =

noo.
Br,m T

n
E rm

n
Fr,m

n .
U, :

n .
Vr,m T

n
Sr,m

Tn

r,m

1 (Gn+r—m—4)(r—m-2)

32n4+r—-m—4)2n+r—m—2)

1 (@Gn+r+m=2)Bn+r—=2)n+r—1)(r+m)

92n+r+m)(2n+r+m—-2)2n+r—1)2n+r—2)

A,
B

E

—m

1dn+r+m—2)(r+m)
2 (2n4+r+m-2)
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._ yn
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The real theorem statement

Theorem (H.)

Letn > 1. Recall the (limit of) discrete series representation n% has lowest

Kg-type V,, = Sym* (V, V") m 1. Letv = x** € V,, be a highest weight vector. For
anyr>=0andme {—r,—r +2,. —2,r},

Q@ D}, is an Qy-eigenvector with elgenvalue A, andD! ve X" L

rm

where Sym>"+"(Vi") m L2, < 2 is the lowest Ky-type of the unique

H G
Toszm S T |-

o Dy, = th;l—l,m—l + E:Z,mh3D’rl—1,m—3 + FruhshsDy_,

Q (f.D},]=U},D! + Vi h

n
rum— rm _3Dr71,m+1

Q [e,,Dl,] = S%,D" ., + Tl hsD"

r—1,m—1
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Details on the Fourier expansion of QMFs

@ G = G, has two (conjugacy classes of) maximal parabolic subgroups.

@ The Heisenberg parabolic has Levi decomposition P = MN with M = GL,,
Z = [N, N], and N/Z isomorphic to the space of binary cubic forms.

@ We will write w = (a,b/3, ¢/3,d) for the binary cubic form
aw® + bu*v + cuv? + dv?.

@ The Fourier expansion (along the center of the Heisenberg parabolic) of a
QMF on G = G, is indexed by positive semi-definite binary cubic forms: For
g = 8r8x» € G(Af)G(R),

FZ(g) = FN(g) + Z aF,w(gf)WZHw,n(goC)
w=0
where ar,, is a locally constant Fourier coefficient and Wa,,, , is the weight n
Whittaker function.
@ Wi, : G(R) — V) is determined by

Woron(ey.) = 3 (%) P2, (2l po@) )

xn-&-vyn—v

(n+v)l(n—v)!

—n<v<n

along with left Ng-equivariant and right K equivariance properties.
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Details on the Fourier expansion of QMFs

@ When we restricta QMF F on G = G, to a QMF ¢ = F|y on H = SU(2, 1),
the Fourier coefficients of ¢ are finite sums of the Fourier coefficients of F.
This is a general phenomenon of QMFs!

@ The Fourier expansion of QMFs on H is indexed by elements of Q(i).
@ The projection of the binary cubic form w = (a,b/3,¢/3,d) to E is
pr(w) = (55, 5°).
a—c d—b

@ The Fourier coefficient for ¢ = F|y associated to v = (5=, 7) is:

= ), are
=V

pr(w)

@ What about the Fourier coefficients of O/, F|;? The invariant theory of
binary cubic forms comes into play.
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Details on the Fourier expansion of QMFs

@ Forw = (a,b/3,c/3,d), let z,, = p,,(i) = ai® + bi* + ci + d. Note that
pr(w) = pr(0w) = 7, = 7w

@ Let b, = 2(3ai + b + ci + 3d). This is proportional to the square root of the
Hessian (quadratic covariant) of the binary cubic form associated to the
orthogonal complement of pr(w).

@ Define _
Vo = Zw()’i) - bw(xsyz) - bw(x%ys) + Z(Xf)

Theorem (H.)
Let £}, be a (suitably normalized) basis element for L7, . Then,

. (2 )
(D WZerwn)| <rm’ w> 2rpr(w),n+5.m

@ Proof sketch: Compute the “highest weight” part D”, (W¢ o’ x*") and then
appeal to equivariance. Again, a stronger theorem statement is actually
needed.
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Arithmeticity of Adjoint L-function

Let IT be a cuspidal automorphic representation of H = SU(2, 1) with o, = ”?{o-
Let ¢ € IT be a Hecke eigenform. Let E¥ (g) = E¥ (g, s = £ + 1) be the degenerate
Heisenberg Eisenstein series on G,, with parameter s chosen so that it is a QMF.
@ Integral representation: (¢, E¢ )y ~ Ly, (£,11, Ad)L(¢,11, Ad)
@ We should be able to write a finite decomposition

E?|H = aoE;I + Za,‘EH(/\/,‘) + 2 b,fj
where the E¥ (y;) are Eisenstein series on H induced from Hecke characters

and the f; are a basis of eigenforms.

@ If we know Ef has Fourier coefficients in Q, then we can prove all the g; and
b;arein Q.
@ Therefore (say ¢ = fi)

(. EZ Yy = ar{p, 0y € Q

e For critical values to the left: replace E¢ (g, s = ¢ + 1) with
Do B o (85 = €= 2r +1).
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More on the arithmeticity of Eisenstein series

Theorem (ongoing joint work with J. Johnson-Leung, F. McGlade, A.

Pollack, M. Roy)

The degenerate quaternionic Heisenberg Eisenstein series on G, (and
B3, Dy, F4, Eg, E7, Eg) can be normalized to have algebraic Fourier coefficients.

@ To prove the statement for all groups not of type G, or D4, we leverage the
Fourier-Jacobi expansion, which turns out to be a half-integral weight
holomorphic Eisenstein series.

@ For G, (resp. D,), we use the pullback procedure described in the previous
slide:

E}|g, = aoEy* + ZaiEGZ (fi) + ijFj~
Now the f; are actually holomorphic modular forms of weight 3¢ and the F;
are a basis for cusp forms on G,.

@ There is a basis of cuspidal QMFs, all of whose Fourier coefficients are all
algebraic numbers (Pollack).
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Thank you!
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