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1. Introduction

The goal of this paper is to define weight-raising differential operators for quaternionic modular
forms, and see that they preserve algebraicity of Fourier coefficients. These operators can then be
applied to obtain results about special values of L-functions.

Our work has a classical analog in the theory of holomorphic modular forms. In [Shi76], Shimura
proves the following theorem:

Theorem 1.0.1 (Shimura). Let f be a Hecke eigenform of weight ℓ1 and g a holomorphic modular
form of weight ℓ2 < ℓ1. Then, when k is an integer with 1

2(ℓ2 + ℓ1 − 2) < k < ℓ1,

L(k, f × g)
πℓ1 < f, f >

∈ Q(f)Q(g), the field generated by the Fourier coefficients of f and g

Shimura’s proof utilizes the classical Rankin-Selberg integral representation of L(s, f × g), in
which f is integrated against the product of g and an Eisenstein series. If En is a holomorphic
Eisenstein series of weight n = ℓ1− ℓ2, then gEn is a holomorphic modular form of weight ℓ1. Then
L(ℓ1 − 1, f × g) is closely related to the Petersson inner product ⟨f, gEn⟩, and one leverages known
properties of holomorphic Eisenstein series to obtain Shimura’s theorem for k = ℓ1 − 1. In the
context of Deligne’s conjecture ([Del79]), this is the right-most critical value of L(s, f × g).

In order to extend his result to closer-to-central critical values, Shimura utilizes what are now
called Maass-Shimura differential operators. These are explicit differential operators δ(r)n which take
modular forms of weight n to nearly holomorphic modular forms of weight n+ r. In order to access
L(ℓ1 − 1 − r, f × g), one starts with a weight n = ℓ1 − ℓ2 − r holomorphic Eisenstein series En

and then integrates f against g · δ(r)n En. While g · δ(r)n En is no longer a classical modular form,
Shimura proves that there is some holomorphic modular form g0 such that ⟨f, g · δ(r)n En⟩ = ⟨f, g0⟩.
Furthermore, the properties of δ(r)n and the structure theory of nearly holomorphic modular forms
imply that the Fourier coefficients of g0 lie in Q(g)Q(En).

Shimura’s technique has since been expanded and carried out in many higher rank situations,
starting with Harris’s work on scalar-valued Siegel modular forms in [Har81], to recent results such as
the standard L-function of vector-valued Siegel modular forms ([Hor+22]), and the spin L-function
for GSp6 ([ERS24]); our list of the interesting work done in this area is far from complete.

In contrast to these previous results, we work with a class of automorphic forms that are not
holomorphic. The examples referenced above all involve holomorphic modular forms (or Siegel
modular forms or Hermitian modular forms). These correspond to automorphic forms on groups
such as SL2 or Sp2n which admit holomorphic discrete series representations. There is a class of
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groups, the quaternionic groups, which do not necessarily have holomorphic discrete series but do
have quaternionic discrete series as studied by Gross and Wallach in [GW96].

On these groups, one can define quaternionic modular forms (QMFs). Roughly speaking, QMFs
are automorphic forms whose archimedean component lie in some quaternionic discrete series. The
Fourier coefficients of QMFs and their arithmetic properties were first studied for the group G2 by
Gan-Gross-Savin ([GGS02]); Pollack developed a robust theory of Fourier expansion for QMFs for
a larger family of groups including all exceptional quaternionic groups ([Pol21]) and established the
algebraicity of cusp forms in ([Pol24]).

Two examples of quaternionic groups are SU(2, 1) and the exceptional group G2. In fact one can
embed SU(2, 1) ↪→ G2. Hundley ([Hun12]) uses this embedding in an integral representation for the
adjoint L-function of a cuspidal automorphic representation Π of SU(2, 1). More precisely, Hundley
proves that integrating f ∈ Π against a certain degenerate Eisenstein series E on G2 represents
L(s,Π,Ad). When we take f and E to be QMFs, we can precisely calculate the archimedean integral
and say something about the special values of L(s,Π,Ad). We remark that even though SU(2, 1) has
holomorphic modular forms, this exact technique does not apply in that context. Hundley’s integral
requires generic automorphic representations, and therefore vanishes for holomorhpic modular forms
on SU(2, 1). It is a general phenomenon that, like in Shimura’s classical result, this technique will
only grant us access to the right-most critical value. We develop a theory of exceptional Maass-
Shimura operators in order to access closer-to-central critical values. Our main result is the following:

Theorem 1.0.2. Let n ≥ 1. For any integers r ≥ 0 and m ∈ {−r,−r+ 2, . . . , r− 2, r}, there exist
differential operators Dn

r,m with the following properties:

• If Φ is a QMF on G2 of weight n, then φ = Dn
r,mΦ|SU(2,1) is a QMF on SU(2, 1) of weight

(n+ r
2 ,m);

• the Fourier coefficients of φ are Q-linear combinations of the Fourier coefficients of Φ.

Compared to the ingredients of Theorem 1.0.1, our operators Dn
r,m are analogous to the combined

steps of the Maass-Shimura operator and then isolating the g0 component. In [Har79], Harris
interprets these ingredients in representation theoretic terms. Taking this as inspiration, the starting
point for our work is a branching problem for quaternionic discrete series onG2 restricted to SU(2, 1).
Restriction problems of this type are solved by Loke ([Lok99]). So for us, the real work lies not
in proving the existence of Dn

r,m, but rather in finding their explicit formulae and seeing that they
preserve algebraicity of Fourier coefficients.

1.1. Organization. Sections 2 and 3 are preliminaries. In Section 4 we define our differential
operators and find an explicit recurrence formula for their “highest weight” components. We establish
algebraic and analytic properties of these highest weight operators. Theorem 1.0.2 can be deduced
from these properties, as explained in Section 5.

1.2. Acknowledgments. This work is part of the author’s thesis research, supervised by Aaron
Pollack. The author is grateful to Aaron Pollack for his guidance, and to Finn McGlade, Alexander
Schlessinger, and Chris Xu for helpful conversations.
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2. Groups and Embeddings, Characters, Notation

In this section we set up the notation that we will use throughout the paper.

2.1. The Group G2 and its Lie algebra. For more details about the split group of type G2

and its Lie algebra, we refer to [Pol21] and [PWZ19], whose exposition and notation (with minor
changes) we follow.

2.1.1. The octonions and G2. The discussion here is valid over any field F of characteristic 0, but
we will fix F = Q. We begin by recalling the Zorn model of the split octonions over Q. Let
V3/Q be the standard representation of SL3 and V ∨

3 the dual representation. Then we have an
isomorphism ∧3V3 → Q. Fix a basis {e1, e2, e3} of V3 with corresponding dual basis {e∗1, e∗2, e∗3} so
that e1 ∧ e2 ∧ e3 7→ 1 ∈ Q in ∧3V3 ∼= Q. With this identification we also have ∧2V3 ∼= V ∨

3 and
∧2V ∨

3
∼= V3, for example e1 ∧ e2 = e∗3 and e∗1 ∧ e∗2 = e3.

We recall the Zorn model Θ of the split octonions. Let

Θ =

{(
a v

ϕ d

)
: a, d ∈ Q, v ∈ V, ϕ ∈ V ∨

}
.

Given x =

(
a v

ϕ d

)
∈ Θ, we can define:

• its conjugate x∗ =

(
d −v
−ϕ a

)
;

• its norm N(x) = ad− ϕ(v);
• its trace Tr(x) = a+ d.

Suppose x =

(
a v

ϕ d

)
and y =

(
a′ v′

ϕ′ d′

)
are two elements of Θ. There is a non-degenerate

symmetric bilinear form ( , ) on Θ defined by (x, y) = N(x+ y)−N(x)−N(y). We can compute

(x, y) = aa′ + dd′ − ϕ(v′)− ϕ′(v).

The multiplication of elements in Θ is described by(
a v

ϕ d

)
·

(
a′ v′

ϕ′ d′

)
=

(
aa′ + ϕ′(v) av′ + d′v − ϕ ∧ ϕ′

a′ϕ+ dϕ′ + v ∧ v′ dd′ + ϕ(v′)

)
.

We will sometimes abuse notation and write a for

(
a 0

0 a

)
∈ Θ and identify elements of V3 or V ∗

3

with elements of Θ, for example e1 =

(
0 e1

0 0

)
∈ Θ.

Define the linear algebraic group G over Q by

G(Q) = {g ∈ GL(Θ) : g(xy) = g(x)g(y) for all x, y ∈ Θ} .

Then G is a split group of type G2. From the definition, any g ∈ G(Q) has the additional properties
g1 = 1 and N(gx) = N(x) and Tr(gx) = Tr(x) for any x ∈ Θ.
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2.1.2. The Lie algebra of G2. Let V7 ⊆ Θ be the 7-dimensional subspace of trace 0 elements. In
fact V7 is orthogonal to 1 with respect to the bilinear form on Θ. Then for any x ∈ Θ, define its
imaginary part Im(x) = 1

2(x − x
∗). The decomposition of x into a “real” and “imaginary” part is

the same as its orthogonal decomposition, i.e.

x =
1

2
Tr(x) · 1 + Im(x)

and Im(x) ∈ V7. Since G fixes 1, we have a representation G → GL(V7) which in fact factors
through SO(V7). The Lie algebra of SO(V7) can be identified with ∧2V7. In this identification, the
action of w ∧ x on v ∈ V7 is

(w ∧ x) · v = (x, v)w − (w, v)x,

the Lie bracket is

[w ∧ x, y ∧ z] = (x, y)w ∧ z − (x, z)w ∧ y − (w, y)x ∧ z + (w, z)x ∧ y,

and the Killing form is proportional to the pairing

(w ∧ x, y ∧ z) = (w, z)(x, y)− (w, y)(x, z).

There is an alternating map ∧2V7 7→ V7 given by w ∧ x 7→ Im(wx). The kernel of this map, g0,
turns out to be the Lie algebra of G. Viewing g0 ⊆ ∧2V7 is useful for computations.

Abstractly, there is the Z/3-grading g0 = sl3 ⊕ V3 ⊕ V ∨
3 . We will give an explicit basis for g0,

as elements of ∧2V7, that corresponds to this Z/3-grading. Let u0 =

(
1 0

0 −1

)
∈ V7. Define, with

indices in {1, 2, 3} taken modulo 3:

• Ekj = e∗j ∧ ek
• vj = u0 ∧ ej + e∗j+1 ∧ e∗j+2

• δj = u0 ∧ e∗j + ej+1 ∧ ej+2.

One can check that vj and δj are in g0 for all j, and Ejk ∈ g0 if j ̸= k. Furthermore,

h = {α1E11 + α2E22 + α3E33 : α1 + α2 + α3 = 0}

is a Cartan subalgebra for g0. The vj , δj , Ejk with j ̸= k along with h span all of g0. As suggested by
the notation, the Ejk correspond to the standard basis for sl3 in the Z/3-grading, while {v1, v2, v3}
is a basis for the V3 with dual basis {δ1, δ2, δ3}. The Lie bracket of an element of sl3 with a vj

or δj is given by the standard or dual representation; The Lie bracket between other elements is
computed as:

• [δj−1, vj ] = 3Ej,j−1

• [vj−1, δj ] = −3Ej−1,j

• [δj−1, δj ] = 2vj+1

• [vj−1, vj ] = 2δj+1

• [δj , vj ] = 3Ejj − (E11 + E22 + E33).
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There is a natural choice of Cartan involution on G induced from an involution on Θ. Namely,
let ι : Θ→ Θ be given by

ι

((
a v

ϕ d

))
=

(
d −ϕ̃
−ṽ a

)
where ẽj = e∗j and ẽ∗j = ej , and ·̃ is extended linearly to the rest of V3 and V ∨

3 . Corresponding to ι
is an involution θ on ∧2V7, given by θ(w ∧ x) = ι(w) ∧ ι(x). One can check that θ preserves g0 and
is a Cartan involution on g0.

Let g = g0⊗C. Then we have the Cartan decomposition g = k⊕ p, with k the +1 eigenspace of θ
in g and p the −1 eigenspace. In fact, k ∼= sllong2 ⊕ slshort2 , with the superscripts indicating whether
the sl2 corresponds to a long or short root. On the group level, the corresponding maximal compact
subgroup KG of G(R) is isomorphic to SU(2)long × SU(2)short/ < (−I,−I) >. Let V long

2 be the
standard representation of SU(2)long; we take {x, y} as a standard basis. Similarly define V short

2

and {xs, ys}. Let VG = Sym3(V short
2 ), a 4-dimensional irreducible representation of SU(2)short. We

fix symplectic forms on V long
2 via ⟨x, y⟩ = 1 and on VG via ⟨x3s, y3s⟩ = 1, ⟨x2sys, xsy2s⟩ = −1/3 to

identify these representations (and their symmetric powers) with their duals.
One can realize p ∼= V long

2 ⊠VG as a representation of KG. In [Pol21] section 4.1, explicit formulas
are given for basis elements of k and p. We use this basis, except we write the subscript s instead
of r for the short root sl2 in k. So k = SpanC{eu, fu, hu, es, hs, fs}, where the u-subscripts denote
a long root sl2 triple and the s-subscripts denote a short root sl2 triple. And p = SpanC{hj , dj :

j = ±1,±3}, where in realizing p as a representation of KG, the h3−2j = x ⊠ x3−j
s yjs and the

d3−2j = y ⊠ x3−j
s yjs.

2.2. Embedding SU(2, 1) inside G2.

2.2.1. A Hermitian subspace of Θ.
Let D > 0 be a square-free integer. Let vD = e2 −De∗2 ∈ Θ. Then K = SpanQ{1, vD} ⊆ Θ is a

subalgebra isomorphic to Q(
√
−D), i.e. a embedding from Q(

√
−D) ↪→ Θ is given by 1 7→ 1 and√

−D 7→ vD. We remark that the conjugation on Θ restricts to complex conjugation on Q(
√
−D).

Let VD be the orthogonal complement of K in Θ, i.e. Θ = VD ⊕ SpanQ{1, vD} is an orthogonal
decomposition relative to the bilinear form on Θ. A basis for VD is

VD = SpanQ{u0, e2 +De∗2, e1, e
∗
3, e

∗
1, e3}.

One can then check directly that (e2 −De∗2)VD = VD. So we may endow VD with the structure of
a 3-dimensional (left) K-vector space, with Hermitian form

H(x, y) = Tr(xy)− 1√
−D

Tr(xvDy).
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Let us check that this is actually a Hermitian form. The difficulty lies in linearity with respect to
vD ≈

√
−D. First

H(x, vDy) = Tr(xvDy)−
1√
−D

Tr(xvDvDy)

= Tr(xvDy)−
√
−DTr(xy)

= −
√
−D · H(x, y)

so it is conjugate linear in the second term. Next in

H(vDx, y) = Tr(vDxy)−
1√
−D

Tr(vDxvDy)

we must check for example that Tr(vDxy) = −Tr(xvDy). For this, we need the general identity for
x, z ∈ Θ that

xz + zx = Tr(x)z +Tr(z)x− (x, z).

Therefore

Tr(vDxy) = Tr(xvDy) = Tr(x) Tr(vDy) + Tr(vD) Tr(xy)− (x, vD) Tr(y)− Tr(xvDy)

but Tr(vD) = 0, and Tr(vDy) = (vD, y
∗) = 0 = (x, vD) when x, y ∈ VD. It is a similar check that

Tr(vDxvDy) = DTr(xy).

2.2.2. The group SU(2, 1) and its Lie algebra.
Let H ⊆ G be the stabilizer of vD. Then for any h ∈ H and x, y ∈ VD, we have (hx, vD) =

(hx, hvD) = (x, vD) = 0 and similarly H(hx, hy) = H(x, y). We see that H is a group of type
SU(2, 1). We can calculate that the Lie algebra of H, i.e. the subspace of g0 that annihilates vD,
has a basis

{E11 − E33, v2 +Dδ2, δ3 −DE12, E23 −Dv1, E13, E21 +Dv3, δ1 +DE32, E31}.

From now on fix D = 1. This choice ensures that H is embedded in G in “good position", i.e.
the choice we made for the Cartan involution on G restricts to one for H. In fact the “good basis”
for k and p we took from [Pol21] contains a good basis for the Cartan decomposition of H. We have
Lie(H)⊗ C = kH ⊕ pH with

kH = SpanC{eu, hu, fu, hs}

pH = SpanC{h−3, h3, d−3, d3}.

The maximal compact of H is KH
∼= U(2) ∼= SU(2)long × U(1)/ < (−I,−I) >. Let VH ⊆ VG be

the subspace SpanC{(y3s), (x3s)}. Then pH ∼= V long
2 ⊠ VH ∼= V2 ⊠ (det−3⊕ det3) as a representation

of KH .

2.3. Characters and the Heisenberg parabolic. We fix as a standard additive character ψ :

Q\A→ C× with ψ(a∞) = e−2πia∞ for a∞ ∈ R.

2.3.1. The Heisenberg Parabolic. Let PG be the stabilizer in G of E13 under the adjoint represen-
tation. This is the Heisenberg parabolic subgroup; in its Levi decomposition PG = MGNG, one
has MG

∼= GL2 and Z(NG) = [NG, NG]. In particular, Lie(MG) is spanned by {δ2, v2} and h; an
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explicit identification of MG with GL2 is given in [Pol21] section 2.3. Also Lie(NG) is spanned by
{E12, v1, δ3, E23, E13}, with Z(NG) the one-dimensional space generated by E13.

Then PH = H ∩ PG is a Heisenberg parabolic (aka Borel, in this case) subgroup of H. We
have the Levi decomposition PH = MHNH , with MH = H ∩ MG and NH = H ∩ NG. The
Lie algebra of MH is spanned by {E11 − E33, v2 + Dδ2} and the Lie algebra of NH is spanned
by {δ3 − DE12, E23 − Dv1, E13}. Note that MH(R) = SH(R) × AH(R) ∼= U(1) × GL1(R) in its
decomposition into a compact and split part. The GL1(R) is generated by E11−E33, and the U(1)

is generated by v2 + δ2.

2.3.2. Characters. Define WG := Nab
G = NG/[NG, NG]. Characters χ on NG(Q)\NG(A) correspond

to elements ω ∈WG(Q). We will make this explicit.
For any Q-algebra R, we fix a bijection of WG(R) with the space of binary cubic forms over R as

aE12 +
b

3
v1 +

c

3
δ3 + dE23 ∈WG ←→ au3 + bu2v + cuv2 + dv3.

Write
(
a, b3 ,

c
3 , d
)

to denote au3+bu2v+cuv2+dv3 or its corresponding element of WG. The adjoint
action of MG on NG/[NG, NG] corresponds to the representation of MG on the space of binary cubic
forms given by

(m · f)

((
u

v

))
= det(m)2f

(
m−1

(
u

v

))
.

There is a symplectic form on WG given by〈(
a,
b

3
,
c

3
, d

)
,

(
a′,

b′

3
,
c′

3
, d′
)〉

= ad′ − 1

3
bc′ +

1

3
cb′ − da′.

This form is preserved, up to similitude, by MG.
The image of any X ∈ NG modulo [NG, NG] is some pX =

(
a′, b

′

3 ,
c′

3 , d
′
)
∈WG. Then associated

to ω =
(
a, b3 ,

c
3 , d
)
∈ WG(Q) is the character χω : NG(Q)\NG(A) → C× given by χω(X) =

ψ(⟨ω, pX⟩). Also, for ω ∈WG(R), we will slightly abuse notation and write pω(z) for the polynomial
az3 + bz2 + cz + d and pω(u, v) for the binary cubic form au3 + bu2v + cuv2 + d.

Under these identifications, elements µ of WH := Nab
H correspond to tuples of the form µ =

(a,−d,−a, d), which correspond to characters χµ of NH(Q)\NH(A) via χµ(X) = ψ(⟨µ, pX⟩). Write
(a, d) for the element (a,−d,−a, d) ∈ WH and pµ(z) for the polynomial az3 − 3dz2 − 3az + d. We
remark that any such element is “positive” in the sense of [Pol20] as long as it is nonzero. Indeed,
one can compute that the discriminant of pµ(z) is 108(a2 + d2)2.

Now let pr :WG →WH be given by(
a,
b

3
,
c

3
, d

)
7→
(
a− c
4

,
d− b
4

)
.

This projection is the identity on WH ; the projection onto the orthogonal complement is given by

pr⊥
((

a,
b

3
,
c

3
, d

))
=

(
3a+ c

4
,
3d+ b

12
,
3a+ c

12
,
3d+ b

4

)
.

Let ω =
(
a, b3 ,

c
3 , d
)
∈ WG(R). When we restrict a Fourier coefficient on G2 to SU(2, 1), the

quantities pω(i) will be involved. However we have ppr(ω)(i) = pω(i) and ppr⊥(ω)(i) = 0. One way to
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distinguish different ω at the level of SU(2, 1) is related to the quadratic covariant of binary cubic
forms. Namely, define the binary quadratic form

qω(u, v) = (b2 − 3ac)u2 + (bc− 9ad)uv + (c2 − 3bd)v2,

and let qω(z) be the associated quadratic polynomial. Then q vanishes on WH , i.e. qpr(ω)(i) = 0 for
any ω. On the other hand,

qpr⊥(ω)(i) = −
1

4
(3ai+ b+ ci+ 3d)2

is nonzero as long as ω ̸∈WH . These quantities appear in the Fourier coefficients of our differentiated
QMFs.

Definition 2.3.1. For ω =
(
a, b3 ,

c
3 , d
)
∈WG(R), define the quantities

• zω := 2pω(i) = 2ppr(ω)(i) = −2ai− 2b+ 2ci+ 2d

• bω := −4ip′ω(i) + 6pω(i) = 6ai+ 2b+ 2ci+ 6d.

We remark that bω(i)2 = −16qpr⊥(ω)(i) and bω(i) = 0 if ω ∈WH .

3. Quaternionic Modular Forms and their Fourier Expansion

3.1. Quaternionic Discrete Series.

3.1.1. G2. For any integer n ≥ 2, there is a discrete series representation πGn of G(R) studied by
Gross and Wallach in [GW96], with KG-type decomposition

πGn |KG
=

∞⊕
j=0

Sym2n+j(V long
2 )⊠ Symj(VG).

Write VG
n = Sym2n(V long

2 )⊠1 for the lowest KG-type. We remark that there is also a limit discrete
series at n = 1 with the same KG-type decomposition.

It is quite complicated in general to figure out how U(p) moves around vectors between KG-types.
All we will need to keep in mind is the following: for v ∈ Sym2n(V long

2 )⊠ 1 the lowest KG-type of
πnG, the map

p⊗r ⊗ (Sym2n(V long
2 )⊠ 1)→ (Symr(V long

2 )⊠ Symr(VG))⊗ (Sym2n(V long
2 )⊠ 1)

→ Sym2n+r(V long
2 )⊠ Symr(VG)

must just be multiplication on elements. For example, for x2n ∈ Sym2n(V long
2 ) and h3d−3 ∈ p⊗2, it

takes some work to figure out completely the decomposition of

h3d−3x
2n ∈

2⊕
j=0

Sym2n+j(V long
2 )⊠ Symj(VG),

but on the other hand we can read off that the projection of h3d−3x
2n to the top piece Sym2n+2(V long

2 )⊠

Sym2(VG) is equal to x2n+1y ⊠ (y3s)(x
3
s).

3.1.2. SU(2, 1) and Restriction. For any integer n ≥ 1, ϵ ∈ {0, 1}, and integer m with the same
parity as ϵ, there is a discrete series representation πHn+ ϵ

2
,m with KH -type decomposition
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πHn+ ϵ
2
,m|KH

=

∞⊕
j=0

Sym2n+ϵ+j(V long
2 )⊠ (Symj(VH)⊗ detm).

Write VH
n+ ϵ

2
,m = Sym2n+ϵ(V long

2 ). ⊠ detm for the lowest KH -type. These are the “large” discrete
series of SU(2, 1), and are in general neither holomorphic nor antiholomorphic.

Corollary 4.2.2 of [Lok99], describes the restriction of πGn to H. We get

πGn |H =

∞⊕
r=0

r⊕
m=−r
m≡r(2)

πHn+ r
2
,m.

In particular, the lowest KH -type of πHn+ r
2
,m in πGn |H is Sym2n+r(V long

2 )⊠Lr,m
n for a particular line

in Lr,m
n ⊆ Symr(VG) that has hs-eigenvalue equal to m. Therefore in the KG-type decomposition

of πGn |H , each Sym2n+j(V long
2 )⊠ Symj(VG) comes from πHn+ r

2
,m for r ≤ j. More precisely,

Sym2n+j(V long
2 )⊠ Symj(VG) =

r⊕
j=0

⊕
−j≤m≤j
m≡r(2)

p
⊗(r−j)
H · VH

n+ j
2
,m
.

The point of this discussion is to help us fix a particular basis element ℓnr,m for each Ln
r,m. The line

Ln
r,m is spanned by an element of the form

vnr,m =
∑

0≤a,b,c,d≤r
−3a−b+c+3d=m

Ca,b,c,d(y
3
s)

a(xsy
2
s)

b(x2sys)
c(x3s)

d.

When (a, b, c, d) = (0, (r−m)/2, (r+m)/2, 0), we must have Ca,b,c,d ̸= 0. Otherwise, Sym2n+r(V long
2 )⊠

Cvnr,m would come from lower weight H-discrete series; it would be in the image of

r−1⊕
j=0

⊕
−j≤m≤j
m≡j(2)

p
⊗(r−j)
H · VH

n+ j
2
,m
.

We define ℓnr,m = (Ca,b,c,d)
−1vnr,m, i.e. by normalizing its (0, (r −m)/2, (r +m)/2, 0) coefficient.

For U(Lie(H)⊗ C) ⊆ U(g), we take as a quadratic Casimir element

ΩH :=
1

6
h2s +

1

2
h2u + (eufu + fueu) +

1

16
(h3d−3 + d−3h3)−

1

16
(h−3d3 + d3h−3).

Then, one can check (see e.g. loc. cit. Theorem 3.3.1 for the infinitesimal character) that ΩH acts
on πHn+ r

2
,m as the scalar λnr,m := m2

6 + 2(n+ r
2)

2 − 2.

3.2. Quaternionic Modular Forms.

3.2.1. G2. Quaternionic modular forms for G2 were first studied by Gan-Gross-Savin in [GGS02].
We give a slightly broader definition following Pollack [Pol20].

We first define an operator Dn on functions Φ : G(A)→ V∨
n as follows. Let D̃G be the operator

defined by
D̃GΦ =

∑
Xi

XiF ⊗X∗
i
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where the sum is over a basis {Xi} of p and {X∗
i } is the corresponding dual basis. There is a

KG-equivariant projection pr− : V∨
n ⊗ p∨ → Sym2n−1(V long

2 )∨ ⊠ V ∨
G . Finally let Dn = pr− ◦ D̃G.

Now we can define QMFs for G:

Definition 3.2.1. Let n ≥ 1 be an integer and Φ : G(Q)\G(A)→ V∨
n . We say that Φ is a modular

form on G of weight n if

(1) Φ(gk) = k−1Φ(g) for all g ∈ G(A) and k ∈ KG

(2) DnΦ ≡ 0

(3) Φ is smooth, moderate growth, and Z(g)-finite.

3.2.2. SU(2, 1). Quaternionic modular forms for SU(2, n) were first studied by Hilado-McGlade-
Yan in [HMY24], following work of Koseki-Oda ([KO95]) on SU(2, 1) and Yamashita ([Yam91]) on
SU(2, 2).

Define D̃H analogously to D̃G, and let prH− : V∨
n+ ϵ

2
,m⊗p∨H → Sym2n+ϵ−1(V long

2 )∨⊠(V ∨
H ⊗det−m),

and set DH
n+ ϵ

2
,m = prH− ◦ D̃H . Then

Definition 3.2.2. Let n ≥ 1 be an integer, ϵ ∈ {0, 1}, and m an integer with the same parity as ϵ.
Let φ : H(Q)\H(A)→ V∨

n+ ϵ
2
,m. We say that φ is a modular form on H of weight (n+ ϵ

2 ,m) if

(1) φ(hk) = k−1φ(h) for all h ∈ H(A) and h ∈ KH

(2) DH
n+ ϵ

2
,mφ ≡ 0

(3) φ is smooth, moderate growth, and Z(h)-finite.

3.3. Fourier Expansion. Let Φ be a QMF on G of weight n. For g = gfg∞ ∈ G(A) with
gf ∈ G(Af ) and g∞ ∈ G(R), The Fourier expansion of Φ takes the form

ΦZ(gfg∞) = Φ0(gfg∞) +
∑

ω∈2πWG(Q)
ω>0

aω(gf )W
G
ω,n(g∞)

where, for ω ∈WG(R), and m ∈MG(R),

WG
ω,n(m) =

∑
−n≤v≤n

WG,v
ω,n (m)[xn+v][yn−v]

with
WG,v

ω,n (m) =

(
|j(m, i)pω(z)|
j(m, i)pω(z)

)v

det(m)n| det(m)|Kv(|j(m, i)pω(z)|).

and WG
ω,n is determined by this formula along with equivariance properties

WG
ω,n(nmk) = e−i⟨ω,n⟩k−1WG

ω,n(m)

for n ∈ NH(R), k ∈ KG. In this formula, the Kv are K-Bessel functions or modified Bessel functions
of the second kind, at integer parameters v. More about the components of this general formula
can be found in [Pol21] or [Pol20]. For our purposes, in Section 4, we will work with these functions
in a specific choice of coordinates, so we do not go into more detail here.

Let φ be a QMF on H of weight (n+ ϵ
2 ,m). The Fourier expansion of φ takes the form

φZ(hfh∞) = φ0(hfh∞) +
∑

µ∈2πWH(Q)
µ̸=(0,0)

aµ(hf )W
H
µ,n+ ϵ

2
(h∞).
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Here, for λ ∈ AH(R) ∼= R×,

WH
µ,n+ ϵ

2
,m(λ) =

∑
−n− ϵ

2
≤v≤n+ ϵ

2
v∈Z+ ϵ

2

WH,v
µ,n+ ϵ

2
,m(λ) · [xn+v][yn−v]⊠ w−m

with

WH,v
µ,n+ ϵ

2
,m(λ) = λ2n+ϵ+2

(
|pµ(i)|
pµ(i)

)v+m
2

Kv+m
2
(|pµ(i)|λ)

The w−m is just meant to record that WH
µ,n+ ϵ

2
is valued in the KH representation (Sym2n+ϵ(V2)⊠

detm)∨ ∼= Sym2n+ϵ(V2)⊠ det−m.

4. Differential Operators

4.1. Overview and Strategy.
Let n ≥ 1, and consider the representation πGn |H . Recall from our discussion in Section 3.1.2

that for any r ≥ 0, and m ∈ {−r,−r + 2, . . . , r − 2, r}, there is a single πHn+ r
2
,m ⊆ πGn |H whose

lowest KH -type is cut out by some Ln
r,m with distinguished basis element ℓnr,m. Let Projnr,m be the

KH -equivariant projection map

Projnr,m : Sym2n+r(V long
2 )⊠ Symr(VG)→ Sym2n+r(V long

2 )⊠ Ln
r,m,

unique up to scalar multiple. We pin down Projnr,m by enforcing that it is the identity on ele-
ments of the form v ⊠ ℓnr,m. We will also abuse notation and write Projnr,m for the projection map
Sym2n+r(VG) → Ln

r,m. The differential operator of Theorem 1.0.2 will be a suitable normalization
of (Projnr,m)∨ ◦ D̃r.

We need to understand the action of this operator on Fourier coefficients. Let ω ∈ 2πWG(Q),
and recall the definitions of zω and bω from section 2.3. Let

vω := zω(y
3
s)− bω(xsy2s)− bω(x2sys) + zω(xs)

3 ∈ VG = Sym3(V short
2 ),

and define
Qn

r,m(ω) :=
1

r!
· ⟨ℓnr,m, vrω⟩

Theorem 1.0.2 will follow from the more precise result:

Theorem 4.1.1.
((Projnr,m)∨ ◦ D̃r)WG

ω,n|H = Qn
r,m(ω)WH

pr(ω),n+ r
2

The path to our proof for Theorem 4.1.1 is to explicitly find a scalar-valued version of our
differential operator for the “highest weight” Whittaker functions. Recall

WG,−n
ω,n := ⟨WG

ω,n, x
2n⟩.

Theorem 4.1.2. There exists Dn
r,m ∈ U(g) such that Dn

r,mx
2n ∈ x2n+r ⊠ Ln

r,m, and

Dn
r,m(WG,−n

ω,n )|H = Qn
r,m(ω) ·WH,−(n+ r

2
)

ω,n+ r
2
,m

when both sides are restricted to AH(R)0.
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That Theorem 4.1.1 follows from Theorem 4.1.2, as well as the proof of Theorem 4.1.2, is explained
in section 5. The remainder of this section is dedicated to defining our Dn

r,m, and establishing their
key properties in Theorems 4.3.3 and 4.4.8.

4.2. Operators for highest weight - definition. We first define the Dn
r,m. For any r ≥ 0 and

m ∈ {−r,−r + 2, . . . , r − 2, r}, these are elements of U(g) that are meant to take x2n ∈ VG
n ⊆ πGn

to a highest weight vector in the lowest-KH type VH
n+ r

2
,m = Sym2n+r(V long

2 ) ⊠ detm ⊆ πHn+ r
2
,m in

πGn |H .
Our differential operators will be defined via recursive equations that involve the following coef-

ficients:

Definition 4.2.1. For any integers n ≥ 1, r ≥ 0 and m ∈ {−r,−r + 2, . . . , r − 2, r},

• An
r,m := −1

3

(4n+ r −m− 4)(r −m− 2)

(2n+ r −m− 4)(2n+ r −m− 2)

• Bn
r,m := −1

9

(4n+ r +m− 2)(3n+ r − 2)(n+ r − 1)(r +m)

(2n+ r +m)(2n+ r +m− 2)(2n+ r − 1)(2n+ r − 2)

• En
r,m := An

r,−m

• Fn
r,m := Bn

r,−m

• Un
r,m :=

1

2

(4n+ r +m− 2)(r +m)

(2n+ r +m− 2)

• V n
r,m :=

1

3

(4n+ r −m− 2)(3n+ r − 1)(n+ r)(r −m)

(2n+ r −m)(2n+ r −m− 2)(2n+ r − 1)
• Sn

r,m := Un
r,−m

• Tn
r,m := V n

r,−m

Remark 4.2.2. It would be fair to complain that, for example, An
r,m is not always well defined.

However, An
r,m is only really defined and needed when −r ≤ m ≤ r − 4. Any other problems

similarly disappear.

Definition 4.2.3. Let Dn
0,0 = 1, Dn

1,1 = h1, D
n
1,−1 = h−1. Define inductively

Dn
r,r = h1D

n
r−1,r−1 + En

r,rh3D
n
r−1,r−3

and
Dn

r,m = h−1D
n
r−1,m+1 +An

r,mh−3D
n
r−1,m+3 +Bn

r,mh−3h3D
n
r−2,m

for m ∈ {−r,−r + 2, . . . , r − 2}.

4.3. Operators for highest weight - algebraic properties. We only really care about what
Dn

r,m does to the highest weight vector x2n ∈ Sym2n(V long
2 )⊠ 1 ⊆ πGn . Let us make this formal.

Definition 4.3.1. Define g+ = SpanC{h−3, h−1, h1, h3, eu}. This is a Lie subalgebra of g. Let
J ⊆ U(g+) be the left ideal generated by eu. Since [eu, hj ] = 0 for j = ±1,±3, it is actually a
two-sided ideal.
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Remark 4.3.2. Note that [g+, g+] = Ceu. So by the Poincaré-Birkhoff-Witt theorem, each Dn
r,m

when taken modulo J is represented by a homogeneous degree r polynomial in the hi. Furthermore,
by our discussion in 3.1.2, no nonzero homogeneous degree r polynomial in the hi can annihilate
x2n.

From now on, we identify Dn
r,m with its image in U(g+)/J , in other words with a unique polyno-

mial in Q[h−3, h−1, h1, h3].
From the shape of the recurrence formulas, one might guess that there are some symmetries in

the formulas defining Dn
r,m. We will capture some of these with the element ws ∈ KG defined by

ws(x) = x ws(y) = y

ws(xs) = iys ws(ys) = ixs

For the next theorem statement to make sense, we must note that Jx2n = 0, Ad(ws)J ⊆ J , and
[k, J ] ⊆ J .

Theorem 4.3.3 (Algebraic Properties of Dn
r,m).

Let n ≥ 1. Recall (section 3.1) the (limit of) discrete series representation πGn has lowest KG-
type Vn = Sym2n(V long

2 ) ⊠ 1. Let x2n ∈ Vn be a highest weight vector. For any r ≥ 0 and
m ∈ {−r,−r + 2, . . . , r − 2, r},

(I) Dn
r,mx

2n is an ΩH-eigenvector with eigenvalue λnr,m, and Dn
r,mx

2n ∈ x2n+r ⊠ Ln
r,m where

Sym2n+r(V long
2 )⊠ Ln

r,m ⊆ πGn is the lowest KH-type of the unique πHn+ r
2
,m ⊆ π

G
n |H .

(II) irAd(ws)D
n
r,m = Dn

r,−m

(III) Dn
r,m = h1D

n
r−1,m−1 + En

r,mh3D
n
r−1,m−3 + Fn

r,mh3h−3D
n
r−2,m for −r < m ≤ r

(IV) [fs, D
n
r,m] = Un

r,mD
n
r,m−2 + V n

r,mh−3D
n
r−1,m+1

(V) [es, D
n
r,m] = Sn

r,mD
n
r,m+2 + Tn

r,mh3D
n
r−1,m−1

Proof. Since n is fixed throughout, we will omit it from the superscripts in our notation.
We proceed by induction on r. Assume we have all (I)-(V) for all r′ < r.
The proof of (II) for r will require (I) for r. The proof of (III) for r requires (II) for r. The proof

of (IV) for r requires (III) for r. The proof of (V) for r requires (II) and (IV) for r.
(I) When m < r, we use the defining recurrence Dr,m = h−1Dr−1,m+1 + Ar,mh−3Dr−1,m+3 +

Br,mh3h−3Dr−2,m. Since ΩH commutes with h3 and h−3, the only thing we really need to compute
is ΩHh−1Dr−1,m+1x

2n.
For this, note that

ΩHh−1 − h−1ΩH = −[h−1,ΩH ] = h−1

(
2

3
− 1

3
hs + hu

)
+ 2d−1eu −

2

3
h−3es

Each summand can be handled separately:

• h−1

(
2
3 −

1
3hs + hu

)
Dr−1,m+1x

2n =
(
2
3 −

m+1
3 + 2n+ r − 1

)
h−1Dr−1,m+1x

2n

• euDr−1,m+1x
2n = [eu, Dr−1,m+1]x

2n +Dr−1,m+1eux
2n = 0.

• −2
3h−3esDr−1,m+1x

2n = −2
3h−3 (Sr−1,m+1Dr−1,m+3 + Tr−1,m+1h3Dr−2,m) by Statement (IV)

for r′ = r − 1.
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Therefore,

ΩHh−1Dr−1,m+1x
2n = h−1ΩHDr−1,m+1x

2n +

(
2

3
− m+ 1

3
+ 2n+ r − 1

)
h−1Dr−1,m+1x

2n

− 2

3
Sr−1,m+1h−3Dr−1,m+3 −

2

3
Tr−1,m+1h−3h3Dr−2,m

Now observing that

(a) λnr,m = λnr−1,m+1 +
(
2
3 −

m+1
3 + 2n+ r − 1

)
(b) Ar,mλ

n
r,m = −2

3Sr−1,m+1 +Ar,mλ
n
r−1,m+3

(c) Br,mλ
n
r,m = −2

3Tr−1,m+1 +Br,mλ
n
r−2,m

we conclude ΩHDr,mx
2n = λnr,mDr,mx

2n.
Then, since [hu, Dr,mx

2n] = (2n + r)Dr,mx
2n, and [eu, Dr,mx

2n] = 0, we must have Dr,mx
2n ∈

x2n+r ⊠ Symr(VG). Combining this data with its ΩH -eigenvalue and the fact [hs, Dr,mx
2n] = mx2n

allows us to pin down that Dr,mx
2n ∈ x2n+r ⊠ Ln

r,m, as desired.
To prove the statement when m = r, we can use the other recurrence for Dr,r and copy the same

method.
(II) For −r < m < r, first of all Ad(ws)ΩH = ΩH and ws fixes x2n so

ΩHwsDr,mw
−1
s x2n = Ad(ws)ΩHwsDr,mw

−1
s x2n

= wsΩHDr,mx
2n

= λnr,mwsDr,mx
2n, using Statement (I)

= λnr,mAd(ws)Dr,mwsx
2n

= λnr,mAd(ws)Dr,mx
2n

SinceAd(ws)hj = (−i)h−j for j = ±1,±3, we also see that [hs, Ad(ws)Dr,m] = −(−i)rmAd(ws)Dr,m.
Furthermore [hu, Ad(ws)Dr,m] = (−i)rrAd(ws)Dr,m and [eu, Ad(ws)Dr,m] = 0. So Ad(ws)Dr,mx

2n

must be in the space x2n+r ⊠ Ln
r,−m. Therefore, in their representation as degree r homogeneous

polynomials in the hj , j = ±1,±3, Ad(ws)Dr,m ≈ Dr,−m up to scalar multiple (see remark 4.3.2).

Comparing the coefficients of h
r+m

2
−1 h

r−m
2

1 in irAd(ws)Dr,m and in Dr,−m, we see that they must be
equal.

(III) Here m > −r. Using (II),

Dr,m = irAd(ws)Dr,−m

= irAd(ws)(h−1Dr−1,−m+1 +Ar,−mh−3Dr−1,−m+3 +Br,−mh3h−3Dr−2,m

= h1Dr−1,m−1 + Er,mh3Dr−1,m−3 + Fr,mh3h−3Dr−2,m

by induction.
(IV)
We first handle m > −r. From the formula for Dr,m from (III) and inductive hypothesis,
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[fs, Dr,m] = 2h−1Dr−1,m−1 + h1[fs, Dr−1,m−1]

+ Er,m(3h1Dr−1,m−3 + h3[fs, Dr−1,m−3]) + Fr,m(3h−3h1Dr−2,m + h−3h3[fs, Dr−2,m])

= 2h−1Dr−1,m−1 + h1(Ur−1,m−1Dr−1,m−3 + Vr−1,m−1h−3Dr−2,m)

+ 3Er,mh1Dr−1,m−3 + Er,mh3(Ur−1,m−3Dr−1,m−5 + Vr−1,m−3h−3Dr−2,m−2)

+ 3Fr,mh−3h1Dr−2,m + Fr,mh−3h3(Ur−2,mDr−2,m−2 + Vr−2,mh−3Dr−3,m+1)

We collect everything into the following groups of terms:

(a) 2h−1Dr−1,m−1 + h−3((Vr−1,m−1 + 3Fr,m)h1Dr−2,m + Fr,mVr−2,mh3h−3Dr−3,m+1)

(b) (Ur−1,m−1 + 3Er,m)h1Dr−1,m−3 + Er,mUr−1,m−3h3Dr−1,m−5

(c) (Er,mVr−1,m−3 + Fr,mUr−2,m)h3h−3Dr−2,m−2

and in each group apply the respective identities:

(a)

Vr−1,m−1 + 3Fr,m = Vr,m + 2Ar,m−2

Fr,mVr−2,m = (Vr,m + 2Ar,m−2)Fr−1,m+1

(b)
Er,mUr−1,m−3 = (Ur−1,m−1 + 3Er,m)Er,m−2

(c)

Er,mVr−1,m−3 + Fr,mUr−2,m = (Vr,m + 2Ar,m−2)Er−1,m+1 + 2Br,m−2 + (Ur−1,m−1 + 3Er,m)Fr,m−2

Now, the second term in (a) can be written as

(Vr,m + 2Ar,m−2)h−3(h1Dr−2,m + Fr−1,m+1h−3h3Dr−3,m+1)

which, after taking the (Vr,m + 2Ar,m−2)h−3(Er−1,m+1h3Dr−2,m−2) from (c), becomes

(Vr,m + 2Ar,m−2)h−3(h1Dr−2,m + Er−1,m+1h3Dr−2,m−2 + Fr−1,m+1h−3h3Dr−3,m+1)

= (Vr,m + 2Ar,m−2)h−3Dr−1,m+1.

Here we used Statement (III) for r − 1.
Finally combining the above with the first term in (a) and the 2Br,m−2h3h−3Dr−2,m−2 from (c)

yields

2h−1Dr−1,m−1 + 2Ar,m−2h−3Dr−1,m+1 + 2Br,m−2h3h−3Dr−2,m−2 + Vr,mh−3Dr−1,m+1

= 2Dr,m−2 + Vr,mh−3Dr−1,m+1.

Next combining (b) with the remaining (Ur−1,m−1+3Er,m)Fr,m−2h3h−3Dr−2,m−2 in (c) yields, after
applying Statement (III) for r,

(Ur−1,m−1 + 3Er,m)(h1Dr−1,m−3 + Er,m−2h3Dr−1,m−5 + Fr,m−2h3h−3Dr−2,m−2)

= (Ur−1,m−1 + 3Er,m)Dr,m−2.
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To finish, we observe that (Ur−1,m−1 + 3Er,m) + 2 = Ur,m.
When m = −r,

[fs, Dr,−r] = h−3Dr−1,−r+1 + h−1[fs, Dr−1,−r+1] +Ar,−rh−3[fs, Dr−1,−r+3]

= h−3Dr−1,−r+1 + h−1(Vr−1,−r+1h−3Dr−2,−r+2)

+Ar,−rh−3(Ur−1,−r+3Dr−1,−r+1 + Vr−1,−r+3h−3Dr−2,−r+4)

Which we group into:

(a) h−3(Vr−1,−r+1h−1Dr−2,−r+2 +Ar,−rVr−1,−r+3h−3Dr−2,−r+4)
(b) (1 +Ar,−rUr−1,−r+3)h−3Dr−1,−r+1

In (a), we use the identity

Ar,−rVr−1,−r+3 = Vr−1,−r+1Ar−1,−r+1

to get

h−3Vr−1,−r+1(h−1Dr−2,−r+2 +Ar−1,−r+1Dr−2,−r+4) = Vr−1,−r+1h−3Dr−1,−r+1

When we add this to (b), we get

(1 +Ar,−rUr−1,−r+3 + Vr−1,−r+1)h−3Dr−1,−r+1 = Vr,−rh−3Dr−1,−r+1

as desired (note Ur,−r = 0).
(V) We use (II) and (IV) for r. Note that Ad(ws)es = fs. So

[es, Dr,m] = [Ad(ws)fs, i
rAd(ws)Dr,−m]

= irAd(ws)[fs, Dr,−m]

= irAd(ws)(Ur,−mDr,−m−2 + h−3Vr,−mDr−1,−m+1)

= Ur,−mDr,m+2 + Vr,−mh−3Dr−1,m−1

as desired. □

4.4. Operators for highest weight - analytic properties. The focus of this section is to prove
Theorem 4.1.2. This will follow from our more comprehensive Theorem 4.4.8. Throughout this
section, we will work with a fixed ω ∈ 2πWG(Q).

4.4.1. Coordinates. We will work with coordinates for our Whittaker functions, following the nota-
tion and results of [Pol21]. Recall MG(R) ∼= GL2(R). Let B(R)0 be the neutral component of the
Borel subgroup of MG(R). Take as coordinates for B(R)0

(x, y, t) 7→

(
1 x

0 1

)(
y1/2 0

0 y−1/2

)(
t 0

0 t

)
, where x ∈ R, y ∈ R×

>0, t ∈ R×
>0.

Also write z = x+ iy and ∂z = 1
2(∂x − i∂y) and ∂z̄ = 1

2(∂x + i∂y).
For some character ω ∈ 2πWG(Q), and weight n, the Whittaker functions for G and their

componentsWG,v
ω,n are determined by their restriction to B(R)0, because of their leftNG-equivariance

and right KG-equivariance properties. On these coordinates,
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WG,v
ω,n (x, y, t) = t2n+2

(
|pω(z)|
pω(z)

)v

Kv(|pω(z)|y−3/2t).

On the other hand, recall that MH(R) = SH(R)AH(R) ∼= U(1)×R× in its decomposition into a
compact and split part. We take t ∈ R×

>0 as a coordinate for AH(R)0. Then the Whittaker functions
for H are determined by their restriction to AH(R)0. For µ ∈ 2πWH(Q), and weight (n+ ϵ

2 ,m),

WH,v
µ,n+ ϵ

2
,m(t) = t2n+ϵ+2

(
|pµ(i)|
pµ(i)

)v+m
2

Kv+m
2
(|pµ(i)|t).

In our embedding ofH insideG, the neutral componentAH(R)0 =MH(R)∩B(R)0 =

{(
t 0

0 t

)
, t ∈ R×

>0

}
.

Suppose that ϵ = 0, m = 0, and µ = pr(ω) or in other words χµ = χ|NH
; Then we have

WH,v
µ,n (t) =WG,v

ω,n (x, y, t)|AH(R) =WG,v
ω,n (x, y, t)|x=0,y=1.

On these coordinates, we have explicit formulas for the actions of p. First of all, by right KG-
equivariance, for any m ∈MG(R)

• huWG,v
ω,n (m) = −2vWG,v

ω,n (m) for any −n ≤ v ≤ n
• ksWG,v

ω,n (m) = 0 for all ks ∈ {es, hs, fs} for any −n ≤ v ≤ n
• euWG,−n

ω,n (m) = 0

Also, sinceWG
ω,n(nm) = e−i⟨ω,n⟩WG,v

ω,n (m), it follows that for anyX ≡ (a′, b
′

3 ,
c′

3 , d
′) ∈ NG/[NG, NG]

and any m ∈MG(R),
(XWG

ω,n)(m) = −i⟨ω,m · pX⟩WG,v
ω,n (m)

Next, following [Pol21], we have the following Iwasawa decompositions (modulo CE13, which acts
trivially on anything in U(g) ·WG

ω,n):

• h3 = p3 + k3 := −2(ϵ1 + ϵ2)− (hu + hr)

• h1 = p1 + k1 := 2(v + iu)2(v − iu)− 4
3fr

• h−1 = p−1 + k−1 :=
2
3(ϵ1 − ϵ2 − 2iv2) +

1
3(3hu − hs)

• h−3 = p−3 + k−3 := −2(v + iu)3 − 4eu

One can calculate the effect of these differential operators on the WG,v
ω,n (x, y, t). Recall that, for

any ϕ(x, y, t) : B(R)0 → C smooth,

• (ϵ1 + ϵ2)ϕ = w∂wϕ

• (ϵ1 − ϵ2)ϕ = 2y∂yϕ

• v2ϕ = y∂xϕ

First define the following auxiliary functions on PG(R). These come out of the derivatives of
WG,v

ω,n (nm) = e−i⟨ω,n⟩WG,v
ω,n (m) by p1, p−3 ∈ Lie(NG) or their conjugates.

Definition 4.4.1.

• Zω
1 (nm) := −i⟨ω,m · p1⟩

• Zω
−1(nm) := −i⟨ω,m · −p1⟩

• Zω
−3(nm) := −i⟨ω,m · p−3⟩.

• Zω
3 (nm) := −i⟨ω,m · −p−3⟩.

Note that these Zj , when restricted to m = (x, y, t) ∈ B(R)0, do not depend on t.
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Lemma 4.4.2. On B(R)0,
• Zω

−3(z) := −2y−3/2pω(z
∗)

• Zω
−1(z) :=

4
3 iy

5/2∂z∗(pω(z
∗)y−3)

• Zω
1 (z) :=

4
3 iy

5/2∂z(pω(z)y
−3)

• Zω
3 (z) := 2y−3/2pω(z)

Proof. This is [Pol21] Lemma 4.5 with some rescaling. □

These appear in the derivatives of our Whittaker functions. Define functions Gω
v : B(R)0 → C

by WG,v
ω,n (x, y, t) = t2n+2Gω

v (x, y, t), i.e.

Gω
v (x, y, t) =

(
|pω(z)|
pω(z)

)v

Kv(|pω(z)|y−3/2t)

Lemma 4.4.3. On B(R)0, p−1 = −8
3 iy∂z̄ and p3 = −2t∂t, and

(1) −8
3 iy∂z̄G

ω
v = Zω

−1tG
ω
v−1 + 2vGω

v

(2) −2t∂tGω
v = −Zω

−3tG
ω
v−1 + 2vGω

v

(3) −2t∂tGω
v = Zω

3 tG
ω
v+1 − 2vGω

v

(4) −Zω
3 tG

ω
v = Zω

−3tG
ω
v−2 − 4(v − 1)Gω

v−1

Proof. 1,2, and 3 are properties of K-Bessel functions; see section 4 of [Pol21]. 4 follows immediately
from 2 and 3. □

Lemma 4.4.4.

(1) p1XW−n
ω,n(m) = Zω

1 (m)t ·XW−n
ω,n(m)

(2) p−3XW
−n
ω,n(m) = Zω

3 (m)t ·XW−n
ω,n(m)

for all X ∈ U(g) and m ∈ B(R)0.

Proof. Follows from left NG-equivariance. □

Finally we will need the relations

Lemma 4.4.5. On B(R)0,
• p−1(Z

ω
−3) = 2Zω

−3 + 4Zω
−1

• p−1(Z
ω
−1) =

2
3Z

ω
−1 +

8
3Z

ω
1

• p−1(Z
ω
1 ) = −2

3Z
ω
1 + 4

3Z
ω
3

• p−1(Z
ω
3 ) = −2Zω

3

Proof. Direct computation. □

Definition 4.4.6.
Define Pn,ω

0,0 = 1, Pn,ω
1,1 = Zω

1 , P
n,ω
1,−1 = Zω

−1. Then, define Pn,ω
r,m by the recurrence formulas.

Pn,ω
r,r = Zω

1 P
n,ω
r−1,m−1 + En

r,rZ
ω
3 P

n,ω
r−1,m−3

and
Pn,ω
r,m = Zω

−1P
n,ω
r−1,m+1 +An

r,mZ
ω
−3P

n,ω
r−1,m+3 +Bn

r,mZ
ω
3 Z

ω
−3P

n,ω
r−2,m

for m ∈ {−r,−r + 2, . . . , r − 2}.
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4.4.2. Main result. In this section we calculate the action of Dr,m on

WG,−n
ω,n = ⟨WG

ω,n, x
2n⟩.

Recall we are identifying Dr,m with a homogeneous degree r polynomial in Q[h−3, h−1, h1, h3]. So
we need to make sure this action is well-defined:

Lemma 4.4.7. Let F : G(R)→ V∨
n be a smooth, right KG-equivariant function. If Y ∈ J , then

Y ⟨F, x2n⟩ = 0

Proof. We may assume Y is a monomial. By the Poincaré-Birkhoff-Witt theorem, we can write
Y = Y1e

s
u with Y1 ∈ p⊗r

+ for some r ≥ 0 and s > 0 Then,

Y ⟨F, x2n⟩ = −Y1⟨F, esux2n⟩ = 0.

□

We are now ready to state the main result of this section:

Theorem 4.4.8 (Analytic properties of Dr,m). Let n ≥ 1 be an integer, and ω ∈ WG(R). Then,
for any r ≥ 0 and m ∈ {−r,−r + 2, . . . , r − 2, r},

(I) On the group B(R)0,

Dn
r,m(W−n

ω,n) = Pn,ω
r,m (z)t2n+r+2G−n−( r−m

2
)(x, y, t)

(II) For m > −r, there is the additional recurrence formula

Pn,ω
r,m = Zω

1 P
n,ω
r−1,m−1 + En

r,mZ
ω
3 P

n,ω
r−1,m−3 + Fn

r,mZ
ω
3 Z

ω
−3P

n,ω
r−2,m

(III) Define Sr,m for r ≥ 0 and m ∈ {−r,−r + 2, . . . , r − 2} by S0,0 = S1,1 = S1,−1 = 0, and for
r ≥ 2

Sr,m :=
2

3
(m+ 1)Pn,ω

r−1,m+1 + p−1(P
n,ω
r−1,m+1)

+ 2An
r,m(2n+ r −m− 2)Pn,ω

r−1,m+3 + 4Bn
r,m(2n+ r − 1)(Z3P

n,ω
r−2,m).

Then, Sr,m = 0 for all r and m.

Proof. Since n and ω are fixed throughout, we omit them from the notation.
Outline: We proceed by induction on r. We may verify directly that the theorem holds for r = 0

and r = 1.
Suppose now that r ≥ 2 and we have Statements (I), (II), and (III) for all r′ < r.
We first prove (III) for r, which requires (II) and (III) for r′. Next we prove (I) for r, which will

require (III) for r as well as the inductive hypothesis. Then we finally prove (II), which will require
(I) for r as well as the inductive hypothesis.

(III) We handle separately the three cases m ∈ {−r,−r + 2, . . . , r − 6} and m = r − 4 and
m = r − 2, due to the different recurrence formulas defining Pr−1,m+1 and Pr−1,m+3 in these cases.

Case 1 of (III), m ∈ {−r,−r + 2, . . . , r − 6}:
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We will spell out the computations for this case in the detail. Set Cr,m = 4Br,m(2n + r − 1) −
8
3Er−1,m+3. Then we can write

Sr,m =
2

3
(m+ 1)Pr−1,m+1 + p−1(Pr−1,m+1)

+ 2Ar,m(2n+ r −m− 2)Pr−1,m+3 + Cr,m(Z−3Pr−2,m)

+
8

3
Er−1,m+3(Z3Pr−2,m).

Into the expression above, we will plug in the recurrence formulas of definition 4.4.6 for Pr−1,m+1

and Pr−1,m+3 and Pr−2,m in for everything except the last summand.
We first compute, using the recurrence formula for Pr−1,m+1,

p−1(Pr−1,m+1) = p−1(Z−1Pr−2,m+2 +Ar−1,m+1Z−3Pr−2,m+4 +Br−1,m+1Z3Z−3Pr−3,m+1)

= p−1(Z−1)Pr−2,m+2 + Z−1p−1(Pr−2,m+2)

+Ar−1,m+1 [p−1(Z−3)Pr−2,m+4 + Z−3p−1(Pr−2,m+4)]

+Br−1,m+1 [p−1(Z−3Z3)Pr−3,m+1 + Z−3Z3p−1(Pr−3,m+1)]

which using Lemma 4.4.5 gives

p−1(Pr−1,m+1) =
2

3
Z−1Pr−2,m+2 +

8

3
Z1Pr−2,m+2 + Z−1p−1(Pr−2,m+2)

+Ar−1,m+1 [2Z−3Pr−2,m+4 + 4Z−1Pr−2,m+4 + Z−3p−1(Pr−2,m+4)]

+Br−1,m+1 [2Z−3Z3Pr−3,m+1 + 4Z−1Z3Pr−3,m+1 − 2Z−3Z3Pr−3,m+1 + Z−3Z3p−1(Pr−3,m+1)]

Now plugging in the above, as well as the recurrence formulas for

• Pr−1,m+1 = Z−1Pr−2,m+2 +Ar−1,m+1Z−3Pr−2,m+4 +Br−1,m+1Z3Z−3Pr−3,m+1

• Pr−1,m+3 = Z−1Pr−2,m+4 +Ar−1,m+3Z−3Pr−2,m+6 +Br−1,m+3Z3Z−3Pr−3,m+3

• Pr−2,m = Z−1Pr−3,m+1 +Ar−2,mZ−3Pr−2,m+2 +Br−2,mZ3Z−3Pr−4,m

into Sr,m (but keeping the 8
3Er−1,m+3Z3Pr−2,m part as is), one is left with the sum of the following

groups of terms:

(a) (2Ar,m(2n+ r −m− 2)Br−1,m+3 + Cr,mAr−2,m)Z3Z−3Pr−3,m+3

(b) (4Ar−1,m+1 + 2Ar,m(2n+ r −m− 2))Z−1Pr−2,m+4

(c) 2Ar,m(2n+ r −m− 2)Ar−1,m+3Z−3Pr−2,m+6

(d) 2
3(m+ 2)Z−1Pr−2,m+2 + Z−1p−1(Pr−2,m + 2) + (4Br−1,m+1 + Cr,m)Z−1Z3Pr−3,m+1

(e)

2

3
(m+ 1)Br−1,m+1Z−3Z3Pr−3,m+1 +Br−1,m+1Z−3Z3p−1(Pr−3,m+1)

+ Cr,mBr−2,mZ−3Z3Z3Pr−4,m

(f) 2
3(m+ 4)Ar−1,m+1Z−3Pr−2,m+4 +Ar−1,m+1Z−3p−1(Pr−2,m+4)

(g) 8
3Z1Pr−2,m+2 +

8
3Er−1,m+3Z3Pr−2,m

In each group, we notice the following identities involving the coefficient terms:
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(a)

2Ar,m(2n+ r −m− 2)Br−1,m+3 + Cr,mAr−2,m =
8

3
Fr−1,m+3 −

8

3
Br−1,m+3

+Ar−1,m+1 · 4Br−1,m+3(2n+ (r − 1)− 1)

+Br−1,m+1 · 2Ar−2,m(2n+ (r − 2)−m− 2)

(b) 4Ar−1,m+1 + 2Ar,m(2n+ r −m− 2) = −8
3 + 2Ar−1,m+1(2n+ (r − 1)− (m+ 1)− 2)

(c) 2Ar,m(2n+r−m−2)Ar−1,m+3 = −8
3Ar−1,m+3+Ar−1,m+1·2Ar−1,m+3(2n+(r−1)−(m+3)−2)

(d) 4Br−1,m+1 + Cr,m = 4Br−1,m+1(2n+ (r − 1)− 1)

(e) Cr,mBr−2,m = Br−1,m+1 · 4Br−2,m(2n+ (r − 2)− 1)

(f) leave as is
(g) leave as is

Now,

• The 8
3Fr−1,m+3Z3Z−3Pr−3,m+3 from (a), added to (g), gives

8

3
Z1Pr−2,m+2 +

8

3
Er−1,m+3Z3Pr−2,m +

8

3
Fr−1,m+3Z3Z−3Pr−3,m+3,

which is exactly 8
3Pr−1,m+3 by (II) for r − 1.

• The −8
3Br−1,m+3Z3Z−3Pr−3,m+3 from (a), added to the −8

3Z−1Pr−2,m+4 from (b), and
the −8

3Ar−1,m+3Pr−2,m+6 from (c), gives −8
3Pr−1,m+3 by the recurrence formula defining

Pr−1,m+3.
• All the terms in (d), added to the 2Ar−1,m+1(2n+ (r− 1)− (m+1)− 2)Z−1Pr−2,m+4 from

(b), combine to give Z−1 · Sr−1,m+1, which vanishes by inductive hypothesis.
• All the terms in (e), added to the Br−1,m+1 · 2Ar−2,m(2n+ (r− 2)−m− 2)Z3Z−3Pr−3,m+3

from (a), combined to give Br−1,m+1Z3Z−3 ·Sr−2,m,which vanishes by inductive hypothesis.
• All the terms in (f), added to the Ar−1,m+1 · 4Br−1,m+3(2n + (r − 1) − 1)Z3Z−3Pr−3,m+3

from (a), added to the Ar−1,m+1 · 2Ar−1,m+3(2n+ (r − 1)− (m+ 3)− 2)Z−3Pr−2,m+6 from
(c), combine to give Ar−1,m+1Z−3 · Sr−1,m+3, which vanishes by inductive hypothesis.

All terms are accounted for in the list above, and we are left with Sr,m = 8
3Pr−1,m+3− 8

3Pr−1,m+3 = 0,
as desired.

Case 2 of (III), m = r − 2:
We wish to show

Sr,r−2 =
2

3
(r − 1)Pr−1,r−1 + p−1(Pr−1,r−1) + 4Br,r−2(2n+ r − 1)(Z3Pr−2,r−2) = 0.

Set
C = 4Br,r−2(2n+ r − 1)− 4Br−1,r−3(2n+ r − 2),

so that

Sr,r−2 =
2

3
(r − 1)Pr−1,r−1 + p−1(Pr−1,r−1) + 4Br−1,r−3(2n+ r − 2)Z3Pr−2,r−2 + CZ3Pr−2,r−2.
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We will plug in the recurrence formula of 4.4.6 for Pr−1,r−1 and Pr−2,r−2 in everything but the last
summand above. For example, using the recurrence formula

Pr−1,r−1 = Z1Pr−2,r−2 + Er−1,r−1Z3Pr−2,r−4,

we compute with Lemma 4.4.5

p−1(Pr−1,r−1) = −
2

3
Z1Pr−2,r−2 +

4

3
Z3Pr−2,r−2 + Z1p−1(Pr−2,r−2)

− 2Z3Er−1,r−1Pr−2,r−4 + Z3Er−1,r−1p−1(Pr−2,r−4).

In the end, Sr,r−2 is the sum of the following groups of terms:

(a)
2

3
(r − 2)Z1Pr−2,r−2 + Z1p−1(Pr−2,r−2) + 4Br−1,r−3(2n+ r − 2)Z1Pr−3,r−3

(b)

2

3
(r − 4)Z3Er−1,r−1Pr−2,r−4 + Z3Er−1,r−1p−1(Pr−2,r−4)

+ (
4

3
+ C)Z3Pr−2,r−2 + 4Br−1,r−3(2n+ r − 2)Er−2,r−2Z3Z3Pr−3,r−5

Each group vanishes:

(a) This is Z1Sr−1,r−3, which vanishes by inductive hypothesis.
(b) We must notice that

Br−1,r−3Er−2,r−2 = Br−1,r−5Er−1,r−1

and
4

3
+ C = Er−1,r−1 · 2Ar−1,r−5(2n+ (r − 1)− (r − 5)− 2)

to see that these terms can be expressed as

Z3Er−1,r−1 · Sr−1,r−5

which again vanishes by inductive hypothesis.

Therefore we have Sr,r−2 = 0, as desired.
Case 3 of (III), m = r − 4:
Note that

2Ar,r−4(2n+ r − (r − 4)− 2) = −8

3
,

so that

Sr,r−4 =
2

3
(r − 3)Pr−1,r−3 + p−1(Pr−1,r−3)−

8

3
Pr−1,r−1 + 4Br,r−4(2n+ r − 1)Z3Pr−2,r−4.

Set
C ′ = 4Br,r−4(2n+ r − 1)− 8

3
Er−1,r−1
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so that

Sr,r−4 =
2

3
(r − 3)Pr−1,r−3 + p−1(Pr−1,r−3)−

8

3
Pr−1,r−1 + C ′Z3Pr−2,r−4

+
8

3
Er−1,r−1Z3Pr−2,r−4

We plug in the recurrence formulas of definition 4.4.6 for Pr−1,r−3 and Pr−1,r−1 and Pr−2,r−4 into ev-
erything but the last summand above; note a part of p−1(Z−1Pr−2,r−2) and the 8

3Er−1,r−1Z3Pr−2,r−4

will cancel the −8
3Pr−1,r−1. In the end, Sr,r−4 is the sum of the following groups of terms:

(a)

2

3
(r − 2)Z−1Pr−2,r−2 + Z−1p−1(Pr−1,r−2) + (4Br−1,r−3 + C ′)Z−1Z3Pr−3,r−3

(b)

2

3
(r − 3)Z3Z−3Br−1,r−3Pr−3,r−3 + Z3Z−3Br−1,r−3p−1(Pr−3,r−3)

+ C ′Br−2,r−4Z3Z−3Z3Pr−4,r−4

Each group vanishes:

(a) Noting that
4Br−1,r−3 + C ′ = 4Br−1,r−3(2n+ (r − 1)− 1),

these terms combine to give Z−1 · Sr−1,r−3 which vanishes by inductive hypothesis.
(b) Noting that

C ′Br−2,r−4 = Br−1,r−3 · 4Br−2,r−4(2n+ (r − 2)− 1),

these terms combine to give Br−1,r−3Z3Z−3 · Sr−2,r−4, which vanishes by inductive hypoth-
esis.

Therefore Sr,r−4 = 0, as desired. (I) We handle separately the cases m ∈ {−r,−r + 2, . . . , r − 2}
and m = r − 2.

Case 1 of (I), m ∈ {−r,−r + 2, . . . , r − 2}:
We compute Dr,m via its definition

Dr,m = h−1Dr−1,m+1 +Ar,mh−3Dr−1,m+3 +Br,mh−3h3Dr−2,m

and inductive hypothesis.
We have by Lemma 4.4.3 (1),

h−1Dr−1,m+1(W
−n
ω,n) = p−1(Pr−1,m+1t

2n+(r−1)+2G−n−( r−m
2

)+1) + k−1(Dr−1,m+1(W
−n
ω,n))

= (Z−1Pr−1,m+1)t
2n+r+2G−n−( r−m

2
) + 2(−n− (

r −m
2

) + 1)Pr−1,m+1t
2n+(r−1)+2G−n−( r−m

2
)+1

+ p−1(Pr−1,m+1)t
2n+(r−1)+2G−n−( r−m

2
)+1

+ (2n+ (r − 1)− (
m+ 1

3
))Pr−1,m+1t

2n+(r−1)+2G−n−( r−m
2

)+1.
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By Lemma 4.4.4 (2) and Lemma 4.4.3 (4),

h−3Dr−1,m+3(W
−n
ω,n) = −Z3(Pr−1,m+3t

2n+(r−1)+2G−n−( r−m
2

)+2)

= (−Z3Pr−1,m+3)t
2n+r+2G−n−( r−m

2
) − 4(−n− (

r −m
2

) + 1)Pr−1,m+3t
2n+(r−1)+2G−n−( r−m

2
)+1.

By Lemma 4.4.3 (3),

h3Dr−2,m(W−n
ω,n) = p3(Pr−2,mt

2n+(r−2)+2G−n−( r−m
2

)+1) + k3(Dr−2,m(W−n
ω,n))

= −Z−3Pr−2,mt
2n+(r−1)+2G−n−( r−m

2
) − 2(2n+ (r − 2) + 2)Pr−2,mt

2n+(r−2)+2G−n−( r−m
2

)+1

+ 2(−n− (
r −m

2
) + 1)Pr−2,mt

2n+(r−2)+1G−n−( r−m
2

)+1

− (2n+ (r − 2) +m)Pr−2,mt
2n+(r−2)+1G−n−( r−m

2
)+1

so then by Lemma 4.4.4 (2)

(⋆) h−3h3Dr−2,m(W−n
ω,n) = Z3Z−3Pr−2,mt

2n+r+2G−n−( r−m
2

)

+ 4Z3Pr−2,m(2n+ r − 1)t2n+(r−1)+1G−n−( r−m
2

)+1

Collecting terms, we get

Dr,m(W−n
ω,n) = Pr,mt

2n+r+2G−n− (r−m)
2

+ (Sr,m)t2n+(r−1)+1G−n−( r−m
2

)+1

where Sr,m is

2

3
(m+1)Pr−1,m+1+p−1(Pr−1,m+1)+4Ar,m(n+(

r −m
2

)−1)Pr−1,m+3+4Br,m(2n+r−1)(Z3Pr−2,m)

and vanishes by Statement (III).
Case 2 of (I), m = r:
We use Theorem 4.3.3 (III) and compute in general

Dr,m(W−n
ω,n) = (h1Dr−1,m−1 + Er,mh3Dr−1,m−3 + Fr,mh3h−3Dr−2,m)(W−n

ω,n)

From Lemma 4.4.4 (1) and the formula for [fs, Dr,m] from Theorem 4.3.3 and Lemma 4.4.4 (2),

h1Dr−1,m−1(W
−n
ω,n) = p1(Dr−1,m−1W

−n
ω,n) + k1(Dr−1,m−1W

−n
ω,n)

= Z1Pr−1,m−1t
2n+r+2G−n−( r−m

2
) −

4

3
[fs, Dr−1,m−1]W

−n
ω,n

= Z1Pr−1,m−1t
2n+r+2G−n+ r−m

2
− 4

3
(Ur−1,m−1Dr−1,m−3 + Vr−1,m−1h−3Dr−2,m)W−n

ω,n

= Z1Pr−1,m−1t
2n+r+2G−n+ r−m

2
− 4

3
Ur−1,m−1Pr−1,m−3t

2n+(r−1)+2G−n−( r−m
2

)−1

+
4

3
Vr−1,m−1Z3Pr−2,mt

2n+(r−1)+2G−n−( r−m
2

)+1
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From Lemma 4.4.3 (2)

h3Dr−1,m−3(W
−n
ω,n) = p3(Pr−1,m−3t

2n+(r−1)+2G−n−( r−m
2

)−1) + k3(Dr−1,m−3(W
−n
ω,n))

= (Z3Pr−1,m−3)t
2n+r+2G−n−( r−m

2
) − 2(2n+ (r − 1) + 2)Pr−1,m−3t

2n+(r−1)+2G−n−( r−m
2

)−1

− 2(−n− (
r −m

2
)− 1)Pr−1,m−3t

2n+(r−1)+2G−n−( r−m
2

)−1

− (2n+ (r − 1) + (m− 3))Pr−1,m−3t
2n+(r−1)+2G−n−( r−m

2
)−1

Using also the formula for h−3h3Dr−2,m(W−n
ω,n) from (⋆), we get

(h1Dr−1,m−1 + Er,mh3Dr−1,m−3 + Fr,mh3h−3Dr−2,m)(W−n
ω,n

= (Z1Pr−1,m−1 + Er,mZ3Pr−1,m−3 + Fr,mZ3Z−3Pr−2,m)t2n+r+2G−n−( r−m
2

)

+ (S′)Pr−1,m−3t
2n+(r−1)+2G−n−( r−m

2
)−1 + (S′′)Z3Pr−2,mt

2n+(r−1)+2G−n−( r−m
2

)+1

Where
S′ =

(
−4

3
Um−1
r−1 + (−4n− 2r − 2m+ 4)Er,m

)
= 0.

and
S′′ =

(
4

3
V m−1
r−1 + 4Fr,m(2n+ r − 1)

)
= 0

so we are left with only

(⋆⋆) Dr,m(W−n
ω,n) = (Z1Pr−1,m−1 + Er,mZ3Pr−1,m−3 + Fr,mZ3Z−3Pr−2,m)t2n+r+2G−n−( r−m

2
)

When m = r, by definition Pr,r = Z1Pr−1,r−1 + Er,rZ3Pr−1,r−3 so we are done (note Fr,r = 0).
(II)
When −r < m < r, we have on one hand from (I) that

Dr,m(W−n
ω,n) = Pr,mt

2n+r+2G−n−( r−m
2

)

and on the other hand from (⋆⋆) that

Dr,m(W−n
ω,n) = (Z1Pr−1,m−1 + Er,mZ3Pr−1,m−3 + Fr,mZ3Z−3Pr−2,m)t2n+r+2G−n−( r−m

2
)

so we are done (note that the K-Bessel functions do not vanish).
□

5. Final Steps

In this section we finally prove Theorem 4.1.2 and Theorem 4.1.1, and then Theorem 1.0.2. We
start with a preliminary lemma:

Lemma 5.0.1. Let v ∈ Sym2n(V long
2 )⊠1. If Y ∈ p⊗r, then for any smooth function F : G(R)→ V∨

n ,

⟨(D̃r)F, Y v⟩ = Y ⟨F, v⟩.

Proof. We can check this directly, for example on basis elements of p and Vn. □

Lemma 5.0.2. Let L ⊆ Symr(VG) be a line. Let

PrL : Sym2n+r(V long
2 )⊠ Symr(VG)→ Sym2n+r(V long

2 )⊠ L



26 BRYAN HU

be the KH-equivariant projection map, unique up to scalar multiple.
Let v ∈ Sym2n(V long

2 )⊠ 1. If Y ∈ p⊗r, and satisfies Y v ∈ v′ ⊠L with v′ ∈ Sym2n+r(V long
2 ), then

for any smooth function F : G(R)→ Vn,

⟨(Pr∨L ◦ D̃r)F, v′⟩ = Y ⟨F, v⟩.

up to scalar multiple

Proof. First D̃rF is valued in
r⊕

j=0

(
Sym2n+j(V long

2 )⊠ Symj(VG)
)∨

.

We can orthogonally decompose the top summand relative to KH :

Sym2n+r(V long
2 )⊠ Symj(VG) = Sym2n+r(V long

2 )⊠ L⊕ Sym2n+r(V long
2 )⊠ L⊥.

If Y v ∈ v′ ⊠ L, it follows that
⟨(Pr∨L⊥ ◦ D̃r)F, Y v⟩ = 0,

and so
⟨D̃rF, Y v⟩ = ⟨(Pr∨L ◦ D̃r)F, v′⟩

and we are done via Lemma 5.0.1. □

Proof of Theorem 4.1.2. Note that Pω,n
r,m and Dn

r,m are defined by the same recurrence relations, and
the line Ln

r,m in terms of monomials in {(y3s), (xsy2s), (x2sys), (x3s)} can be read off from the recurrence
relations defining Dn

r,m. Furthermore,

• Zω
3 (i) = zω;

• Zω
1 (i) = bω/3;

• Zω
−1(i) = −bω/3

• Zω
−3(i) = −zω.

Therefore,

Pω,n
r,m (i) =

1

r!
⟨ℓnr,m, vrω⟩ = Qn

r,m(ω)

and the theorem follows from Theorem 4.4.8 (I). □

Proof of Theorem 4.1.1. Both sides of Theorem 4.1.1 are quaternionic. So to test equality we can
pair with an element of x2n+r ⊠Ln

r,m. Such an element is given by Dn
r,mx

2n, due to Theorem 4.3.3.
Then since both sides have the same NH and KH equivariance properties, we need to check equality
on AH(R)0. Then, by Lemma 5.0.2, this is exactly the content of Theorem 4.1.2. □

Proof of Theorem 1.0.2. Suppose ω ∈ 2πWG(Q) has pr(ω) = µ ∈ 2πWH(Q). Then, Qn
r,m(ω) ∈

(2π)rQ(i), and so by Theorem 4.1.1, we can set Dn
r,m = π−r(Projnr,m)∨ ◦ D̃r to get the desired

algebraicity of Fourier coefficients. □
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