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1. INTRODUCTION

The goal of this paper is to define weight-raising differential operators for quaternionic modular
forms, and see that they preserve algebraicity of Fourier coefficients. These operators can then be
applied to obtain results about special values of L-functions.

Our work has a classical analog in the theory of holomorphic modular forms. In [Shi76|, Shimura

proves the following theorem:

Theorem 1.0.1 (Shimura). Let f be a Hecke eigenform of weight {1 and g a holomorphic modular
form of weight lo < £1. Then, when k is an integer with %(ﬁg +0—2)< k<l
W € Q(f)Q(g), the field generated by the Fourier coefficients of f and g

Shimura’s proof utilizes the classical Rankin-Selberg integral representation of L(s, f X g), in
which f is integrated against the product of g and an Eisenstein series. If E, is a holomorphic
Eisenstein series of weight n = £; — f5, then gF,, is a holomorphic modular form of weight ¢;. Then
L(¢1 — 1, f x g) is closely related to the Petersson inner product (f, gE,), and one leverages known
properties of holomorphic Eisenstein series to obtain Shimura’s theorem for k = ¢; — 1. In the
context of Deligne’s conjecture ([Del79]), this is the right-most critical value of L(s, f x g).

In order to extend his result to closer-to-central critical values, Shimura utilizes what are now
called Maass-Shimura differential operators. These are explicit differential operators 5%” which take
modular forms of weight n to nearly holomorphic modular forms of weight n + . In order to access
Lty —1—r,f x g), one starts with a weight n = ¢; — {3 — r holomorphic Eisenstein series F,
and then integrates f against g - &@En. While g - (L@En is no longer a classical modular form,
Shimura proves that there is some holomorphic modular form gg such that (f, g - (57(LT)En> = (f, g0).
Furthermore, the properties of 553’) and the structure theory of nearly holomorphic modular forms
imply that the Fourier coefficients of gg lie in Q(g)Q(Ey).

Shimura’s technique has since been expanded and carried out in many higher rank situations,
starting with Harris’s work on scalar-valued Siegel modular forms in [Har81], to recent results such as
the standard L-function of vector-valued Siegel modular forms (|[Hor+22|), and the spin L-function
for GSps (JERS24]); our list of the interesting work done in this area is far from complete.

In contrast to these previous results, we work with a class of automorphic forms that are not
holomorphic. The examples referenced above all involve holomorphic modular forms (or Siegel
modular forms or Hermitian modular forms). These correspond to automorphic forms on groups

such as SLy or Spo, which admit holomorphic discrete series representations. There is a class of
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groups, the quaternionic groups, which do not necessarily have holomorphic discrete series but do
have quaternionic discrete series as studied by Gross and Wallach in [GW96|.

On these groups, one can define quaternionic modular forms (QMFs). Roughly speaking, QMFs
are automorphic forms whose archimedean component lie in some quaternionic discrete series. The
Fourier coefficients of QMFs and their arithmetic properties were first studied for the group Go by
Gan-Gross-Savin (|[GGS02|); Pollack developed a robust theory of Fourier expansion for QMFs for
a larger family of groups including all exceptional quaternionic groups (|Pol21|) and established the
algebraicity of cusp forms in ([Pol24]).

Two examples of quaternionic groups are SU(2, 1) and the exceptional group Gs. In fact one can
embed SU(2,1) < G3. Hundley ([Hun12|) uses this embedding in an integral representation for the
adjoint L-function of a cuspidal automorphic representation II of SU(2,1). More precisely, Hundley
proves that integrating f € II against a certain degenerate Eisenstein series F on (G2 represents
L(s,11, Ad). When we take f and E to be QMFs, we can precisely calculate the archimedean integral
and say something about the special values of L(s, I, Ad). We remark that even though SU(2,1) has
holomorphic modular forms, this exact technique does not apply in that context. Hundley’s integral
requires generic automorphic representations, and therefore vanishes for holomorhpic modular forms
on SU(2,1). It is a general phenomenon that, like in Shimura’s classical result, this technique will
only grant us access to the right-most critical value. We develop a theory of exceptional Maass-

Shimura operators in order to access closer-to-central critical values. Our main result is the following;:

Theorem 1.0.2. Let n > 1. For any integers r > 0 and m € {—r,—r+2,...,r —2,r}, there exist
differential operators Dy, with the following properties:
o If @ is a QMF on Gy of weight n, then v = Dy, ®|sy(2,1) is a QMF on SU(2,1) of weight
(n+35,m);
o the Fourier coefficients of ¢ are Q-linear combinations of the Fourier coefficients of ®.

Compared to the ingredients of Theorem |'17_Tf|, our operators Dy, are analogous to the combined
steps of the Maass-Shimura operator and then isolating the gy component. In [Har79|, Harris
interprets these ingredients in representation theoretic terms. Taking this as inspiration, the starting
point for our work is a branching problem for quaternionic discrete series on G restricted to SU(2, 1).
Restriction problems of this type are solved by Loke (|Lok99|). So for us, the real work lies not

n

in proving the existence of Dy, but rather in finding their explicit formulae and seeing that they

preserve algebraicity of Fourier coefficients.

1.1. Organization. Sections [2] and [3] are preliminaries. In Section [4] we define our differential
operators and find an explicit recurrence formula for their “highest weight” components. We establish
algebraic and analytic properties of these highest weight operators. Theorem [I.0.2] can be deduced

from these properties, as explained in Section
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Schlessinger, and Chris Xu for helpful conversations.



EXCEPTIONAL MAASS-SHIMURA OPERATORS FOR SU(2,1) IN G» 3

2. GROUPS AND EMBEDDINGS, CHARACTERS, NOTATION
In this section we set up the notation that we will use throughout the paper.

2.1. The Group G35 and its Lie algebra. For more details about the split group of type Go
and its Lie algebra, we refer to [Pol21]| and [PWZ19|, whose exposition and notation (with minor

changes) we follow.

2.1.1. The octonions and Go. The discussion here is valid over any field F' of characteristic 0, but
we will fix FF = Q. We begin by recalling the Zorn model of the split octonions over Q. Let
V3/Q be the standard representation of SLs and V3’ the dual representation. Then we have an
isomorphism A3V — Q. Fix a basis {ey, €2, e3} of V3 with corresponding dual basis {e}, e}, €5} so
that e; Aeas Aes — 1 € Q in A*V3 = Q. With this identification we also have A2V3 =2 V:,,V and
A2V, 22 V3, for example e1 A eg = e and e} A e} = e3.

We recall the Zorn model O of the split octonions. Let

@:{(Z 2>:a,d€Q,UGV,¢>EVV}.

Given z = (Z Z) € O, we can define:

d —v
e its conjugate x* = > ;

e its norm N(z) = ad — ¢(v);
o its trace Tr(z) = a +d.

!/ /

a v a v
Suppose = = <¢ d> and y = py d’> are two elements of ©. There is a non-degenerate

symmetric bilinear form (, ) on © defined by (z,y) = N(x +y) — N(z) — N(y). We can compute

(z,y) = aa’ +dd' — $(v') — ¢/(v).

The multiplication of elements in © is described by
a v a v\ aa’ + ¢'(v) av' +dv—o N
¢ d ¢ d) \do+dd +vAad dd + (v') '

0
) € O and identify elements of V3 or V5

a
We will sometimes abuse notation and write a for (
a

e1
0 0
Define the linear algebraic group G over Q by

G(Q) = {g € GL(0) : g(zy) = g(x)g(y) for all 2,y € O}.

Then G is a split group of type Ga. From the definition, any g € G(Q) has the additional properties
gl =1 and N(gx) = N(z) and Tr(gz) = Tr(x) for any = € ©.

€ 0.

with elements of O, for example e; =
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2.1.2. The Lie algebra of Go. Let Vz C © be the 7-dimensional subspace of trace 0 elements. In
fact V7 is orthogonal to 1 with respect to the bilinear form on ©. Then for any x € O, define its
1

imaginary part I'm(z) = 5(x — 2*). The decomposition of = into a “real” and “imaginary” part is

the same as its orthogonal decomposition, i.e.
1
=3 Tr(z) - 1+ Im(x)

and Im(z) € V7. Since G fixes 1, we have a representation G — GL(V7) which in fact factors
through SO(V7). The Lie algebra of SO(V7) can be identified with A2V7. In this identification, the
action of w Ax onv € V7 is

(wAzx) -v=(z,0)w— (w,v)x,

the Lie bracket is
[wAz,yNz] = (z,y)wAz—(r,2)wAy — (w,y)xAz+ (w,2)z Ay,
and the Killing form is proportional to the pairing

(w Nz, y N Z) = (w')z)(xuy) - (wvy)(xVZ)

There is an alternating map A2V7 + V7 given by w A o + Im(wz). The kernel of this map, go,
turns out to be the Lie algebra of G. Viewing go C A?V7 is useful for computations.

Abstractly, there is the Z/3-grading go = sls & V3 & V3. We will give an explicit basis for go,
0

1
as elements of A2V, that corresponds to this Z/3-grading. Let ug = (0 1) € V7. Define, with

indices in {1, 2, 3} taken modulo 3:
o L= e"-‘ A eg
® v —uo/\e]+e 1/\e
® 0; =up A\ ej +ejr1 A ej+2.

One can check that v; and d; are in gg for all j, and Ej;, € go if j # k. Furthermore,
h = {a1E11 + asFay + a3ls3 : ay + s + az = 0}

is a Cartan subalgebra for go. The v;, d;, Ej;, with j # k along with b span all of go. As suggested by
the notation, the Ej;, correspond to the standard basis for sl3 in the Z/3-grading, while {v1, v, v3}
is a basis for the V3 with dual basis {d1,02,03}. The Lie bracket of an element of sl3 with a v,
or d; is given by the standard or dual representation; The Lie bracket between other elements is

computed as:

° [6j—1,v;] =3Ej;1

L4 [UJ 1, ] BEJ 1,5

[ [ i—15 ] = 21}]_;,_1

* [vj-1,v5] = 20511

e [0j,v;] = 3Ej; — (E11 + Ea2 + E33)
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There is a natural choice of Cartan involution on G induced from an involution on ©. Namely,

let ¢ : © — © be given by
a v [ d —<;~5
“We a) )] " \=5 «

% and e?f = ¢j, and  is extended linearly to the rest of V3 and V3’. Corresponding to ¢

J
is an involution @ on A2V, given by 8(w A z) = t(w) A t(x). One can check that 6 preserves gy and

where €; = e

is a Cartan involution on gg.

Let g = go ® C. Then we have the Cartan decomposition g = €@ p, with € the +1 eigenspace of 6
in g and p the —1 eigenspace. In fact, ¢ = 5[12'mg @ sl with the superscripts indicating whether
the sly corresponds to a long or short root. On the group level, the corresponding maximal compact
subgroup K¢g of G(R) is isomorphic to SU(2)!°"9 x SU(2)*hert/ < (—I,—I) >. Let V;ong be the
standard representation of SU(2)""Y; we take {x,y} as a standard basis. Similarly define Vyhort
and {zs,ys}. Let Vg = Sym?(V5rt) a 4-dimensional irreducible representation of SU(2)*"°t. We
fix symplectic forms on Vi via (z,y) = 1 and on Vg via (23,53) = 1, (a2ys, zsy2) = —1/3 to
identify these representations (and their symmetric powers) with their duals.

One can realize p = VQZO”g XV as a representation of K. In |[Pol21] section 4.1, explicit formulas
are given for basis elements of £ and p. We use this basis, except we write the subscript s instead
of r for the short root sly in €. So ¢ = Spanc{ey, fu, hu, €5, hs, fs}, where the u-subscripts denote
a long root sly triple and the s-subscripts denote a short root sly triple. And p = Spanc{h;,d; :
Jj = £1,£3}, where in realizing p as a representation of Kg, the hz_o; = 2 X :Ug_jyg and the
dy_oj = yRad Tyl

2.2. Embedding SU(2,1) inside Ga.

2.2.1. A Hermitian subspace of ©.

Let D > 0 be a square-free integer. Let vp = ez — Dej € ©. Then K = Spang{l,vp} C © is a
subalgebra isomorphic to Q(v/—D), i.e. a embedding from Q(v/—D) < © is given by 1 + 1 and
vV/—D s vp. We remark that the conjugation on © restricts to complex conjugation on Q(v/—D).

Let Vp be the orthogonal complement of K in ©, i.e. © = Vp @ Spang{l,vp} is an orthogonal
decomposition relative to the bilinear form on ©. A basis for Vp is

Vp = Spang{ug, e2 + Dej, e, €3, €7, €3}

One can then check directly that (ez — De3)Vp = Vp. So we may endow Vp with the structure of
a 3-dimensional (left) K-vector space, with Hermitian form

H(z,y) = Tr(zy) — \/% Tr(zvpy).
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Let us check that this is actually a Hermitian form. The difficulty lies in linearity with respect to
vp ~ v —D. First
1
H(x,v = Tr(zv — — Tr(zvpv
(z,vpy) (zvpy) N (zvpvpy)
= Tr(zvpy) — V—D Tr(zy)
=—-v-D %(x’y)

so it is conjugate linear in the second term. Next in
1
H(vpz,y) = Tr(vpry) — — Tr(vpzv
(vpz,y) (vpzy) N (vpzvDY)
we must check for example that Tr(vpzy) = — Tr(zvpy). For this, we need the general identity for
x,z € O that
xz + zx = Tr(x)z + Tr(2)z — (x, 2).

Therefore
Tr(vpzy) = Tr(zvpy) = Tr(x) Tr(vpy) + Tr(vp) Tr(zy) — (z,vp) Tr(y) — Tr(zvpy)

but Tr(vp) = 0, and Tr(vpy) = (vp,y*) = 0 = (x,vp) when z,y € Vp. It is a similar check that
Tr(vpavpy) = D Tr(xy).

2.2.2. The group SU(2,1) and its Lie algebra.

Let H C G be the stabilizer of vp. Then for any h € H and z,y € Vp, we have (hx,vp) =
(hx,hvp) = (z,vp) = 0 and similarly H(hx,hy) = H(z,y). We see that H is a group of type
SU(2,1). We can calculate that the Lie algebra of H, i.e. the subspace of gy that annihilates vp,
has a basis

{E1n — Es3,v2 + Ddo, 03 — DE1g, Eo3 — Dvy, Er3, E91 + Dvs, 01 + DE3sy, E31}.

From now on fix D = 1. This choice ensures that H is embedded in G in “good position", i.e.
the choice we made for the Cartan involution on G restricts to one for H. In fact the “good basis”
for ¢ and p we took from |[Pol21| contains a good basis for the Cartan decomposition of H. We have
Lie(H) ® C =ty @ py with

EI‘I — SpanC{eua hua fua hs}
pp = Spanc{h_3, h3,d_3,ds}.

The maximal compact of H is Ky = U(2) = SU(2)"" x U(1)/ < (—1I,—I) >. Let Vi C Vg be
the subspace Spanc{(y2), (#2)}. Then py = VQZO"Q X Vg = Vo K (det ™ @ det?) as a representation
of Ky.

2.3. Characters and the Heisenberg parabolic. We fix as a standard additive character 1 :
Q\A — C* with ¥(as) = e 2™ for ay, € R.

2.3.1. The Heisenberg Parabolic. Let Pg be the stabilizer in G of E13 under the adjoint represen-
tation. This is the Heisenberg parabolic subgroup; in its Levi decomposition Po = MagNg, one
has Mg = GLg and Z(Ng) = [Ng, Ng]. In particular, Lie(M¢) is spanned by {d2,v2} and b; an
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explicit identification of Mg with GLg is given in [Pol21] section 2.3. Also Lie(N¢) is spanned by
{E12,v1, 03, B3, F13}, with Z(N¢g) the one-dimensional space generated by Fis.

Then Py = H N Pg is a Heisenberg parabolic (aka Borel, in this case) subgroup of H. We
have the Levi decomposition Py = MyNyg, with Mg = HN Mg and Ng = H N Ng. The
Lie algebra of My is spanned by {E11 — E33,v2 + Dds} and the Lie algebra of Ny is spanned
by {83 — DEys, Eo3 — Duy, E3}. Note that My(R) = Sp(R) x Ag(R) = U(1) x GL(R) in its
decomposition into a compact and split part. The GL;(R) is generated by E1; — E33, and the U(1)
is generated by vy + d5.

2.3.2. Characters. Define Wi := N& = N¢/[Ng, Ng]. Characters x on Ng(Q)\Ng(A) correspond
to elements w € Wi (Q). We will make this explicit.
For any Q-algebra R, we fix a bijection of W (R) with the space of binary cubic forms over R as

b
aFis + 5“1 + E53 4+ dEs3 € Wa +— au® + buv + cuv? + dvs.

Write ( a, 3,5, d) to denote au® + bu?v + cuv? + dv? or its corresponding element of W¢. The adjoint

action of Mg on N¢g/[N¢, N¢| corresponds to the representation of Mg on the space of binary cubic

() -

There is a symplectic form on W given by

b ¢ v, , 1., 1 ,
<<(I,3,3,d),< 33d>>—ad—3bc—|—36b—da

This form is preserved, up to similitude, by Mg.

The image of any X € Ng modulo [Ng, Ng| is some px = (a T % ,d’) € Wq. Then associated

tow = (a ,g,g,d) € Wg(Q) is the character x, : Ng(Q)\Ng(A) — C* given by x,(X) =

Y({w,px)). Also, for w € Wi (R), we will slightly abuse notation and write p_(z) for the polynomial

forms given by

az® + bz% + cz + d and p,,(u,v) for the binary cubic form au?® + bu?v + cuv? + d.

Under these identifications, elements p of Wy := NI‘fIb correspond to tuples of the form pu =
(a, —d, —a,d), which correspond to characters x, of Ng(Q)\Ng(A) via x,(X) = ¥ ({1, px)). Write
(a,d) for the element (a,—d, —a,d) € Wy and p,(z) for the polynomial az® — 3dz? — 3az + d. We
remark that any such element is “positive” in the sense of [Pol20| as long as it is nonzero. Indeed,
one can compute that the discriminant of p,(z) is 108(a? + d?)2.

Now let pr : Wg — Wy be given by

éfd . a—c d—2>
303 14 )

This projection is the identity on Wpy; the projection onto the orthogonal complement is given by

n éfd _(3a+c 3d+b 3a+c 3d+Db
pr\*33 T4 T2 12 4 )

Let w = ( ,g, g,d) € Wg(R). When we restrict a Fourier coefficient on Go to SU(2,1), the

quantities p, (i) will be involved. However we have py,.(,)() = pw (i) and p,,.1 (. (i) = 0. One way to
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distinguish different w at the level of SU(2,1) is related to the quadratic covariant of binary cubic

forms. Namely, define the binary quadratic form
o (u,v) = (b* = 3ac)u® + (be — 9ad)uv + (2 — 3bd)v?,

and let g, (z) be the associated quadratic polynomial. Then ¢ vanishes on Wiy, i.e. g (i) = 0 for
any w. On the other hand,

Qprt () (1) = —i(?m + b+ ci + 3d)?
is nonzero as long as w € Wy. These quantities appear in the Fourier coefficients of our differentiated
QMFs.

Definition 2.3.1. For w = (a, %, %,d) € Wg(R), define the quantities
o 2 = 20 (0) = 2ppr(en) () = —2ai — 2b+ 2ci + 2d
o b, := —4ip] (i) + 6py, (i) = 6ai + 2b + 2ci + 6d.

We remark that b,,(7)? = —16¢,,,1 (. (i) and by(i) =0 if w € W
3. QUATERNIONIC MODULAR FORMS AND THEIR FOURIER EXPANSION
3.1. Quaternionic Discrete Series.

3.1.1. G>. For any integer n > 2, there is a discrete series representation 71'7? of G(R) studied by
Gross and Wallach in [GW96|, with Kg-type decomposition

oo
7 |1e = €D Sy (1,7) B Symd (Vo).
§=0

Write V& = Sym?* (V™)K 1 for the lowest Kq-type. We remark that there is also a limit discrete
series at n = 1 with the same Kg-type decomposition.

It is quite complicated in general to figure out how U (p) moves around vectors between Kg-types.
All we will need to keep in mind is the following: for v € Symzn(VQlO"g ) X1 the lowest Kg-type of
m¢y, the map

P @ (Sym?™ (V™) K1) — (Sym" (V,”"9) K Sym" (V) ® (Sym*(V,") K 1)
— Sym”™+ (1,7") K Sym” (V)

must just be multiplication on elements. For example, for 22" € Sym2”(VQIO"9 ) and hyd_3 € p®2, it
takes some work to figure out completely the decomposition of

2
hsd_32" € €D Sym?™H (V,”9) K Sym/ (Vg),
j=0

but on the other hand we can read off that the projection of hsd_32>" to the top piece Sym2"+2(V2long)&
Sym?(Vg) is equal to 22"y X (y3)(23).

3.1.2. SU(2,1) and Restriction. For any integer n > 1, € € {0,1}, and integer m with the same

H

parity as €, there is a discrete series representation v em with K-type decomposition
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o0
T iy = @ Sym®™ < (157") ® (Sym (Vir) @ det™).
§=0
Write VH em = Sym2”+€(V2l°"9 ). X det™ for the lowest Kpy-type. These are the “large” discrete
series of SU(2,1), and are in general neither holomorphic nor antiholomorphic.
Corollary 4.2.2 of [Lok99), describes the restriction of & to H. We get

oo T
G H
- D B
r=0 m=-—r
m=r(2)

In particular, the lowest K p-type of /! rm D 7%\ g is Sym®™ (Vi) K L™ for a particular line
in L™ C Sym"(Vg) that has hs-eigenvalue equal to m. Therefore in the Kg-type decomposition
of 78|, each Sym?"* (V") K Sym/ (V) comes from 72 for r < j. More precisely,

n+g,m

Sy () s (1)~ ) €@ Wi VA

n+g,m’
j=0 —j<m<;j
m=r(2)
The point of this discussion is to help us fix a particular basis element £}, for each L;,,. The line
L7, is spanned by an element of the form
= D Cabead) (@) (23ys) (x3)".

0<a,b,c,d<r
—3a—b+c+3d=m

When (a, b, c,d) = (0, (r—m)/2, (r+m)/2,0), we must have Cyp 4 # 0. Otherwise, Sme””(Véong)X
Coy,,, would come from lower weight H-discrete series; it would be in the image of

r—1
@ @ p%(r_]) ’ VnHJr%vm'

=0 —j<m<j
m=j(2)
We define €7, = (Cape,d) 00, 1e. by normalizing its (0, (r —m)/2, (r + m)/2,0) coefficient.

For U(Lie(H) ® C) C U(g), we take as a quadratic Casimir element

1 1 1 1
Qp = ghi + 5h3 + (ewfu + fueu) + E(h:@d—s + d_ghs) — T6(h_3d3 + dsh_3).

Then, one can check (see e.g. loc. cit. Theorem 3.3.1 for the infinitesimal character) that Qg acts

on m as the scalar A7, := %2 +2(n+5)*—2.

H
n+g,m
3.2. Quaternionic Modular Forms.

3.2.1. G2. Quaternionic modular forms for G were first studied by Gan-Gross-Savin in [GGS02].
We give a slightly broader definition following Pollack [Pol20].
We first define an operator D,, on functions ® : G(A) — V! as follows. Let D¢ be the operator
defined by
De®=> X;F®X]
Xi
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where the sum is over a basis {X;} of p and {X} is the corresponding dual basis. There is a
Kg-equivariant projection pr— : V) @ pV — SymZ”_l(Véong)V X VY. Finally let D, = pr_ o Dg.
Now we can define QMFs for G:

Definition 3.2.1. Let n > 1 be an integer and ® : G(Q)\G(A) — VY. We say that ® is a modular
form on G of weight n if

(1) ®(gk) = k~1®(g) for all g € G(A) and k € K¢

(2) Dp® =0

(3) @ is smooth, moderate growth, and Z(g)-finite.

3.2.2. SU(2,1). Quaternionic modular forms for SU(2,n) were first studied by Hilado-McGlade-
Yan in [HMY24], following work of Koseki-Oda ([KO95|) on SU(2,1) and Yamashita ([Yam91]) on
SU(2,2).

Define Dy analogously to D¢, and let prf : VY

Vo m @R Sym® N (V) VRV @det ™),
and set Dﬁr%’m = pril o Dy, Then

Definition 3.2.2. Let n > 1 be an integer, € € {0,1}, and m an integer with the same parity as e.
Let ¢ : HQ)\H(A) — V¥+§,m
(1) p(hk) = k= p(h) for all h € H(A) and h € Kg
(2) D e e =0

(3) ¢ is smooth, moderate growth, and Z(h)-finite.

. We say that ¢ is a modular form on H of weight (n + §,m) if

3.3. Fourier Expansion. Let ® be a QMF on G of weight n. For ¢ = g9 € G(A) with
g5 € G(Ay) and goo € G(R), The Fourier expansion of ® takes the form

O2(9r9%) = Po(9790c) + D au(gr)WSp(goo)

we2rWe(Q)
w>0

where, for w € Wg(R), and m € Mg(R),

Woa(m) =" Wi (m)" ]y ]
—n<v<n
with

G’Um:Mvem"em j(m, 1) pu, (2
W m) = (LD det o) den(m) o D)),

and Wme is determined by this formula along with equivariance properties
an(nmk) = e_i<w’”>k_1W5n(m)

forn € Ng(R),k € K¢. In this formula, the K, are K-Bessel functions or modified Bessel functions
of the second kind, at integer parameters v. More about the components of this general formula
can be found in [Pol21] or [Pol20]. For our purposes, in Section [d] we will work with these functions
in a specific choice of coordinates, so we do not go into more detail here.

Let ¢ be a QMF on H of weight (n 4 §,m). The Fourier expansion of ¢ takes the form

pz(hshos) = @olhphoo) + D aulhp)W < (hoo).
pe2rWr (Q)
n#(0,0)



EXCEPTIONAL MAASS-SHIMURA OPERATORS FOR SU(2,1) IN G» 11

Here, for A € Ag(R) = R*,

H H, _
WinrsmN) = 2 Wil e () 2"y Ry,
—n—5<vint+g
’UGZ“F%
with m
H, ontera [1Pu(@\T .
Wi ) = 20 (L)
The w_,, is just meant to record that W:In L« is valued in the K representation (Sym2"+6(Vg) X
’ 2

det™)Y = Sym?*T¢(V4) X det ~™.
4. DIFFERENTIAL OPERATORS

4.1. Overview and Strategy.

Let n > 1, and consider the representation 7&|f. Recall from our discussion in Section
that for any » > 0, and m € {—r,—r + 2,...,7 — 2,r}, there is a single 7r71;1+%7m
lowest Kpy-type is cut out by some L;’,, with distinguished basis element ¢ ,,. Let Proj;,, be the

C 7% g whose

K-equivariant projection map

Projr,, - Sym* " (V3°"9) R Sym” (V) — Sym?"" (V;""9) ¥ L}!

r,m?

unique up to scalar multiple. We pin down Proj;,, by enforcing that it is the identity on ele-
ments of the form v X 7, . We will also abuse notation and write Proyy’,, for the projection map
Sym?" " (V) — Ly ,,. The differential operator of Theorem will be a suitable normalization
of (Projy,,)Y o D".

We need to understand the action of this operator on Fourier coefficients. Let w € 27W5(Q),
and recall the definitions of z, and b,, from section Let

Vo i = 20(Y2) — b (zsy?) — bo (22ys) + Zo(24)? € Vg = Sym? (Vgherty,

and define )

) 3= {00

Theorem [I.0.2] will follow from the more precise result:

Theorem 4.1.1.
((PTOj;:tm)v © DT>WEn‘H = ?,m(w)Wpﬁ{(w)

?n+%

The path to our proof for Theorem [£.1.1] is to explicitly find a scalar-valued version of our
differential operator for the “highest weight” Whittaker functions. Recall

WLS’:;]_" = (W&, ™).

w,n’

Theorem 4.1.2. There exists D}},,, € U(g) such that D}, 2** € 2*"*" R L} . and

r,m?’

Dy (WS = Q1 (w) - W' (nta)

,m w,n+g5,m

when both sides are restricted to Ap(R)°.



12 BRYAN HU

That Theorem [{.1.1]follows from Theorem[d.1.2] as well as the proof of Theorem [£.1.2] is explained
in section |5} The remainder of this section is dedicated to defining our Dy’,,, and establishing their

key properties in Theorems [£.3.3] and [£.4.8]
4.2. Operators for highest weight - definition. We first define the Dy',,. For any r > 0 and

m € {—r,—r+2,...,7 — 2,7}, these are elements of U(g) that are meant to take z>* € V& C ¥
to a highest weight vector in the lowest-Kpy type Vﬂrg’m = Sym2”+’"(VQI°ng) X det™ C Trf+%’m in
e |

Our differential operators will be defined via recursive equations that involve the following coef-

ficients:

Definition 4.2.1. For any integers n > 1,7 >0and m € {—r,—r+2,...,r — 2,1},
1 (An+r—m—4)(r—m-—2)

AP = ——
* Srm 3@n4+r—m—-—4)2n+r—m—2)
o B . _1 An+r+m—-2)Bn+r—-2)(n+r—1)(r+m)
T 9 2n4r+m)2n4+r+m—2)2n+r—1)2n+1r —2)
o BV, =A0_,,
oFﬁm::Bﬁ_m
o U7 _ L{n+r+m=2)(r+m)
T2 2n4r+m—2)
vn ldAn+r—m—2)Bn+r—1)(n+r)(r—m)
° = =
P 3 2n+r—m)2n4+r—m-—2)2n+r—1)
o St =Ul,,
. T0, = Vi,

Remark 4.2.2. Tt would be fair to complain that, for example, A7, is not always well defined.
However, A? is only really defined and needed when —r < m < r — 4. Any other problems

r,m

similarly disappear.
Definition 4.2.3. Let Dg, =1,D7 = h1, D} _; = h_1. Define inductively
Df,r = h‘lD:L—l,r—l + Eﬁ,rh:iD?—l,r—S

and
D;Z,m = hle;r"L—l,m—i-l + A:},mh*3D;}—1,m+3 + B;r},mh*?)h?)D;l—Zm
forme {—r,—r+2,...,7 —2}.

4.3. Operators for highest weight - algebraic properties. We only really care about what
Dy, does to the highest weight vector °" € Sme”(Vzl(mg) X1 C 7¢. Let us make this formal.

Definition 4.3.1. Define g = Spanc{h_3,h_1,h1,hs,e,}. This is a Lie subalgebra of g. Let
J C U(gy) be the left ideal generated by e,. Since [ey, h;] = 0 for j = £1,43, it is actually a

two-sided ideal.



EXCEPTIONAL MAASS-SHIMURA OPERATORS FOR SU(2,1) IN G» 13

Remark 4.3.2. Note that [gy,g+] = Cey,. So by the Poincaré-Birkhoff-Witt theorem, each Dy,
when taken modulo J is represented by a homogeneous degree r polynomial in the h;. Furthermore,

by our discussion in [3.1.2] no nonzero homogeneous degree r polynomial in the h; can annihilate
2n
=",

From now on, we identify Dy, with its image in U(g+)/J, in other words with a unique polyno-
mial in @[h_g, h_l, hl, h3].
From the shape of the recurrence formulas, one might guess that there are some symmetries in

the formulas defining Dy',,,. We will capture some of these with the element ws € K¢ defined by

ws(z) = ws(y) =y
ws(Ts) = 1Ys ws(Ys) = ixs

For the next theorem statement to make sense, we must note that Jx?" = 0, Ad(w,).J C J, and
[e,J] C J.

Theorem 4.3.3 (Algebraic Properties of Dy, ).

Let n > 1. Recall (section the (limit of ) discrete series representation 75 has lowest Kq-
type V,, = Sme"(VQZ‘mg) X 1. Let 2*® € V, be a highest weight vector. For any r > 0 and
me{-r,—r+2,...,r—2,1},
and D', € x2”+7’ X Ly, where

is the lowest K-type of the unique nttm S C 7%y,

(1) D,’,‘,mx% is an Qp- ezgenvector with eigenvalue Ay, ,

Sym 2n+r(Vlong) X L;Lm C
(11)  Ad(ws) Dl = DI,
(1) Dy = hiDPy oy + BN By DMy o+ F0 hgh 3Dl
(IV) fs, D'l = UL Dy 2+V h—sD}' i1

(V) les; D) = Sy Do + Tl ha DY

for - r<m<r

r—2m

r—1m—1

Proof. Since n is fixed throughout, we will omit it from the superscripts in our notation.

We proceed by induction on 7. Assume we have all (I)-(V) for all 7’ < r.

The proof of (II) for r will require (I) for r. The proof of (III) for r requires (II) for . The proof
of (IV) for r requires (III) for r. The proof of (V) for r requires (II) and (IV) for r.

(I) When m < r, we use the defining recurrence Dy, = h_1Dp—1m41 + Armh—3Dr—1m+3 +
B, mh3sh_3D;_2 ,,. Since Qg commutes with h3 and h_3, the only thing we really need to compute
is QHh—lDr—l,m+1$2n~
For this, note that

2
Qph_1 —h_1Qp = —[h_1,Qx] =h_ ( —

1 2
—hs + hy 2d_1e, — —h_se;
373 + > + 1€ 3 3€

Each summand can be handled separately:
o oy (2= Lthy+hy) Drymira® = (2 =M 4 on 4 p — 1) hoy Dy 2"
L4 euDr—l,m—l—len = [em Dr—l,m+1]$2n + Dr—l,m+1€ux2 =0.

° _%h—SesDr—l,m—i—len — _%h_3 (Sr—l,m+1Dr—1,m+3 + Tr_17m+1h3Dr_2,m) by Statement (IV)
for v’ =r —1.
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Therefore,
2 m+1
Qph_1Dr1mi17* = h_1Qy Dy 10" + <3 — 5 +2n+1r — 1> h_1Dy_1mi12*"
2 2
- gSr—l,m—l-lh—?;Dr—l,m—i-S - gTr—l,m+1h—3h3Dr—2,m

Now observing that
(&) Al = A ma1 + (% - mTH +2n 41— 1)
(b) Ar,m)\?,m = —%Srfl,mqtl + AT,m)‘?—l,m-{-?)
(¢) BrmAry, = —%Tr Lm+1 + Brm)\? 9.m

we conclude 2 HDT7mx2 = N Dr, "

Then, since [hu,Dnme”] = (2n+ T‘)Dr,mx%, and [eu,Dnm:pQ”] = 0, we must have Dr’me" €
2" K Sym” (V). Combining this data with its Qy-eigenvalue and the fact [hs, Dy 2] = ma?"
allows us to pin down that D, ,,2?" € 22" X Ly, as desired.

To prove the statement when m = r, we can use the other recurrence for D, , and copy the same
method.

(IT) For —r < m < r, first of all Ad(ws)Qy = Qg and w; fixes 72" so

Qpws Dy mwy Lp2n Ad(ws)QstDr,me:lan

= wQy Dy mz 2n
= AﬁmwsDr,mxzn, using Statement (I)
N Ad(ug) Dy 2
= )xﬁmAd(ws)DT,m:nQ”
Since Ad(wg)h; = (—i)h_; for j = £1, +3, we also see that [hs, Ad(ws) Dy = —(—1)"mAd(ws)D
Furthermore [hy, Ad(ws) D] = (—i)"rAd(ws) Dy and [ey, Ad(ws) Dy = 0. So Ad(ws) Dy ma"

must be in the space 2" *" R L .
polynomials in the hj, j = +1, 43, Ad(ws)D; ym =~ D, _p up to scalar multiple (see remark [4.3.2)).

r+m r—m

Comparing the coefficients of h_? h; % in i"Ad(ws) Dy, and in D, _p,, we see that they must be

Therefore, in their representation as degree r homogeneous

equal.
(ITI) Here m > —r. Using (II),

Dy = i Ad(w) Dy —m
=" Ad(ws)(h-1Dr—1,—m+1 + Ar—mh—3Dr—1 —m+3 + By —mhsh 3D o
=hDr_1m-1+ Ermh3Dr_1m—3+ Frmhsh_3Dr 2.,
by induction.

(IV)
We first handle m > —r. From the formula for D, ,, from (III) and inductive hypothesis,
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[fs, Drm] = 2h1Dr 1 m—1 + ha[fs, Dr—1,m—1]
+ B (3h1Dr—1m—3 4+ h3[fs, Dr—1,m—3]) + Frm(3h—3h1Dyr_9m + h_3h3[fs, Dr—2m])
=2h_1Dr 1 m—1+h (U1 m—1Dr—1,m—3+ Vicim—1h—3Dr_2.m)
+ 3Er mh1Dr—1,m—3 + Er mh3(Ur—1,m—3Dr—1,m—5 + Vici,m—3h—3Dy_2 m—2)
+ 3F mh_3h1Dr_9m + Frh_3h3(Ur—2mDr—2m—2 + Vo mh—3Dr_3 m41)
We collect everything into the following groups of terms:
(a) 2h-1Dr—1m—1 +h-3((Vict,m—1 + 3Fm)P1Dr—2m + FrnVi—2mhah 3D 3 m11)
(b) (Up—1,m=1+3Erm)h1Dr—1m—3+ ErmUr—1,m—3h3Dr_1,m—s
(©) (ErmVicim—3+ FrmUr—om)hsh_3Dy_2 o

and in each group apply the respective identities:

(a)
Vicim—1+3Fm = Vim + 24, m—2
FrmVicom = (Ve + 2Arm—2)Fr_1.m41
(b)
ErnUr—1m—3 = Ur—1m—1 + 3Erm)Erm—2
(c)

Er,mvr—l,m—?: + Fr,mUr—Q,m = (V;",m + 2Ar,m—2)E’r—1,m+1 + 2Br,m—2 + (Ur—l,m—l + 3Er,m)F7",m—2
Now, the second term in (a) can be written as
(Veom + 24 m—2)h_3(hiDy—2.m + Fr—1m+1h—3h3Dp_3 m41)

which, after taking the (V. + 24 m—2)h—3(Er—1m+1h3Dr—2m—2) from (c), becomes

(Veom + 24 m—2)h_3(h1Dy—2.m + Er—1mi1h3Dr—2m—2 + Fr—1 my1h—3h3Dyr_3m+1)
= (‘/r,m + 2Ar,mf2)h73Dr71,m+1-

Here we used Statement (III) for r — 1.
Finally combining the above with the first term in (a) and the 2B, ,—2hsh_3D,_2 m—o from (c)
yields
2h_1Dy_1m—1+ 24 m—2h_3D;_1mi1 + 2B m—2hsh_3D; 2o+ Veh_3Dr 1 mi1
= 2D7‘,m—2 + V;",mh—3D7"—1,m+1-
Next combining (b) with the remaining (Uy—1m—1+3Erm)Frm—2h3h_3Dr_2m—2 in (c) yields, after
applying Statement (III) for r,
(Ur—l,m—l + 3Er,m)(h1Dr—l,m—3 + Er,m—QhSDr—l,m—S + Fr,m—2h3h—3Dr—2,m—2)
= (Ur—l,m—l + 3E7",m)Dr,m—2-
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To finish, we observe that (U,—1m—1 + 3E;m) +2 = Upm.
When m = —r,

[f87 Dr,—r] - h—3Dr—1,—r+1 + h—l[f37 Dr—l,—r-{—l] + Ar,—rh—S[f57 Dr—l,—r+3]
=h_3Dr_1, 41+ h_1(Vici,—r41h—3Dr—2 _r42)
+ Ar +h_3(Up—1,—r43Dr—1,—p41 + Vi1, —r43h—3Dp_2 _r14)

Which we group into:

(@) heg(Ve—1,—r41h—1Dy—2 —pio+ Ap Vi1 —yi3h_3Dy o _r14)
(b) (1 + Ar,frUrfl,frJrS)hf?)DTfl,frJrl

In (a), we use the identity
Ar Vit ri3=Ve1 11,1
to get
h_3Vi_1,—ry1(h-1Dro o+ Ar 1 ri1Dr o i) = Vi1 pi1h 3D 1 p1
When we add this to (b), we get
A+ A U1, 13+ Vict, vi1)h3Dr 1 1 =V ph 3D 1 11
as desired (note U, _, = 0).
(V) We use (II) and (IV) for . Note that Ad(ws)es = fs. So
[es; Drm] = [Ad(ws) fs,i" Ad(ws) Dy~

= i" Ad(ws)[fs, Dr,—m]

=i " Ad(ws)(Ur,—m Dy —m—2 +h_3Ve _uDr 1 _my1)

=Ur—mDrmi2+ Ve —mh_3Dr 1 m—1
as desired. D

4.4. Operators for highest weight - analytic properties. The focus of this section is to prove
Theorem [£.1.2] This will follow from our more comprehensive Theorem [£.4.8] Throughout this
section, we will work with a fixed w € 27W5(Q).

4.4.1. Coordinates. We will work with coordinates for our Whittaker functions, following the nota-
tion and results of [Pol21]. Recall Mg (R) = GLy(R). Let B(R)" be the neutral component of the
Borel subgroup of Mg (R). Take as coordinates for B(R)°

1 =z y1/2 0 t 0
(:u,y,t)'—><0 1><O 12 \o o , where z € R,y € RZ,,t € RZ,,.

Also write z = x + iy and 0, = %((% —10y) and 0z = %(835 +10y).
For some character w € 27Wg(Q), and weight n, the Whittaker functions for G and their
components Wf 7 are determined by their restriction to B(R)?, because of their left Ng-equivariance

and right Kg-equivariance properties. On these coordinates,
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G (e _ 42042 po(2)[\* 2|y —3/2
W o.t) =42 (B i ety 20,

On the other hand, recall that My (R) = Sg(R)Ag(R) = U(1) x R* in its decomposition into a
compact and split part. We take t € R as a coordinate for A #(R)?. Then the Whittaker functions
for H are determined by their restriction to A (R)°. For p € 2rWg(Q), and weight (n + §,m),

. 1)-}—%
WH,VJ . ) = t2n+e+2 |p,LL(Z)| K..m N E).

t 0
In our embedding of H inside G, the neutral component Ay (R)? = My (R)NB(R)? = 0 ¢ ,t e R, }

Suppose that € = 0, m = 0, and g = pr(w) or in other words x, = x|n,; Then we have
Wias! (£) = WS (@, Dl ay ) = Wi (2,5, 6) le=o=1.
On these coordinates, we have explicit formulas for the actions of p. First of all, by right Kg-
equivariance, for any m € Mq(R)
o h WSV (m) = —20WS¥(m) for any —n < v <n
° kSWf:;f(m) =0 for all ks € {es, hs, fs} for any —n < v <n
o e, WS (m) =0
Also, since an(nm) = e~ Hwm WY (m), it follows that for any X = (d/, %/, %, d") € N¢/|Ng, Ng]
and any m € Mg(R),
(XWS)(m) = —ilw, m - px)WS5 (m)
Next, following |[Pol21|, we have the following Iwasawa decompositions (modulo CEj3, which acts
trivially on anything in U(g) - an)
o h3=p3+ks:=—2(e1+e€)— (hu+hy)
o hy =p1+k1:=2(v+iu)(v—iu) — 3f
e h 1=p1+k:= %(61 — €9 — 2iv9) + %(3hu — hs)
e hog=p 3+k 3:=—2(v+iu)® —4de,
One can calculate the effect of these differential operators on the WwG w(z,y,t). Recall that, for
any ¢(x,y,t) : B(R)? — C smooth,
o (1 + €)= woyo
° (e1 —€2)¢ =2y0y¢
® v = y0y¢
First define the following auxiliary functions on Pg(R). These come out of the derivatives of
Wfﬁ)(nm) = e‘i<w7”>WwG,}f(m) by p1,p—3 € Lie(Ng) or their conjugates.

Definition 4.4.1.

o Z¥(nm) = —i{w,m - p1)

o Z¥ (nm) := —i{w,m - —p1)

o Z¥(nm) = —i{w,m-p_3).

o Z§(nm) := —i{w,m - —p_3).

Note that these Z;, when restricted to m = (x,y,t) € B(R)°, do not depend on t.
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Lemma 4.4.2. On B(R)?,
o 79(z) = =2y~ 2p,(2")
o 7%,(2) = g0 (pu()y~?)
o 7¢(2) := 5iy° 0. (pu(2)y~?)
o Z(2) = 2, (2)

Proof. This is |[Pol21| Lemma 4.5 with some rescaling. O

These appear in the derivatives of our Whittaker functions. Define functions G¥ : B(R)? — C
by WS (2,,1) = 2"F2G% (,y, 1), ie.
P (2)[\* —-3/2
Ge(z,y,t) = 52| K /2t
o) = () Kol
Lemma 4.4.3. On B(R)?, p_; = —%iy&g and p3 = —2t0;, and
(1) =3iyd:GY = Z% tGY_| + 20GY
(2) —2t0,GY = —ZY4tGY_| + 20GY
(3) —2t0:G% = ZWtG‘:H — 20GY

(4) —Z5tGY = Z93tGY_o — 4(v — 1)G¥_
Proof. 1,2, and 3 are properties of K-Bessel functions; see section 4 of [Pol21|. 4 follows immediately
from 2 and 3. O
Lemma 4.4.4.

(1) pPXW, n(m) = Zy (m)t - XW, 5 (m)
(2) p-3XW 5(m) = Zg(m)t - XW,, 7 (m)

for all X € U(g) and m € B(R)".
Proof. Follows from left Ng-equivariance. O
Finally we will need the relations

Lemma 4.4.5. On B(R)°,
o p_(Z%3) =22%;+42%,

o pi(24) = zzw + 87y
o p-1(Z7) = +3524
o p1(Z5) = —QZW
Proof. Direct computation. O

Definition 4.4.6.
Define Fy’; 0 =1 Pnlw =7y P" wl = Z“,. Then, define P, by the recurrence formulas.

Pl = Z9 P+ B 25 P

r—1,m—3

and
nw __ 7w ,W n n W 7w PN,W
Pr,m - Z 1P —1,m+1 + Arm 73P —1,m+3 + Br,mZ?) Zf3Pr72 m

forme{—r,—r+2,...,7—2}.



EXCEPTIONAL MAASS-SHIMURA OPERATORS FOR SU(2,1) IN G» 19

4.4.2. Main result. In this section we calculate the action of D, ,, on

WE,”—TL _ <WG x2n>'

w,n?

Recall we are identifying D), ,,, with a homogeneous degree r polynomial in Q[h_3,h_1, h1, h3]. So
we need to make sure this action is well-defined:

Lemma 4.4.7. Let F : G(R) — V) be a smooth, right Kq-equivariant function. If Y € J, then
Y(F,2°") =0

Proof. We may assume Y is a monomial. By the Poincaré-Birkhoff-Witt theorem, we can write
Y =Yie] with Y; € p?r for some r > 0 and s > 0 Then,

Y(F,2°") = Y1 (F,esz*") = 0.

We are now ready to state the main result of this section:

Theorem 4.4.8 (Analytic properties of D, ,,). Let n > 1 be an integer, and w € Wg(R). Then,
foranyr>0andme{—r,—r+2,....,7r —2,r},
(I) On the group B(R)?,

DZ},m(W_n) = Pﬁ}ﬁ(z)t%MHG_n_(M) (.%', Y, t)

w,n 5

(II) For m > —r, there is the additional recurrence formula

n,w __ w pPN,Ww n w pPN,Ww n w 7w 7,W
Pr,m - Zl P + Er,mZ3 Prfl,me + Fr, Z3 Z—3Pr72,m

r—1,m—1 m

(I1I) Define Sy forr >0 and m € {—r,—r+2,...,7 =2} by Soo = S11 = S1,-1 =0, and for
r>2

2
Sr,m = g(m + 1)P;1_7u{7m+1 +p*1(P:L—’“1),m+l)

+ 240,20+ —m=2)P" |+ 4B, (2n+1r —1)(Z3P ).
Then, Sy m =0 for all r and m.

Proof. Since n and w are fixed throughout, we omit them from the notation.

Outline: We proceed by induction on r. We may verify directly that the theorem holds for » = 0
and r = 1.

Suppose now that r > 2 and we have Statements (I), (II), and (III) for all " < r.

We first prove (III) for r, which requires (II) and (III) for »/. Next we prove (I) for r, which will
require (III) for r as well as the inductive hypothesis. Then we finally prove (II), which will require
(I) for r as well as the inductive hypothesis.

(IIT) We handle separately the three cases m € {—r,—r +2,...,7 — 6} and m = r — 4 and
m =1 — 2, due to the different recurrence formulas defining P,_1 ,,+1 and P._1 ;3 in these cases.

Case 1 of (IIT), me {—r,—r+2,...,7 —6}:
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We will spell out the computations for this case in the detail. Set C,.,, = 4B, n(2n+1r — 1) —

gEr,Lerg. Then we can write

2
Sr,m = g(m + 1)Pr71,m+1 + pfl(Prfl,m+l)

+ 2Ar,m(2n +r—m— 2>Pr—1,m+3 + Cr,m<Z—3Pr—2,m)
8

+ gEr—l,m—i—S(ZSPT—Q,m)-

Into the expression above, we will plug in the recurrence formulas of definition for Pr_1,m+1
and P,_1 43 and P._2 ,, in for everything except the last summand.

We first compute, using the recurrence formula for P_1 41,

P—1(Pr—ims1) = p—1(Z1Pr_omi2 + Ar—imi1 Z—3Pr—omya + Br—1m41232_3Pr_3 m41)
=p_1(Z-1)Pr—amy2 + Z_1p—1(Pr—2.m+2)
+ Ar g1 P-1(Z-3)Pr—2mya + Z_3p—1(Pr—2,m+4)]
+ Br1mi1 [p-1(Z-323)Pr_3m+1 + Z3Z3p_1(Pr—3.m+1)]

which using Lemma [4.4.5| gives

2 8
P—1(Pr_1m+1) = §Z—1Pr—2,m+2 + §21PT—2,m+2 + Z_1p-1(Pr—2m+2)

+ Ar i1 22 3P 9 mia +4Z 1 Pr_gmia+ Z_3p—1(Pr_2m+4)]
+ Br—1m+1 2Z2_323P,_3 mi1 +4Z_1Z3Pr_3mi1 — 22 _3Z3Pr_3 my1 + Z—3Z3p_1(Pr—3,m+1)]
Now plugging in the above, as well as the recurrence formulas for
o Primi1 =2 P omio+ Arami1Z 3P omia+ Br1mi1 2372 3P 3m11
o P ymi3=Z P 2mia+ Ar1m32_3P_2mi6+ Br_1,m+3232_3P,_3.m+3
b PT—Z,m = Z—IPT—3,m+1 + Ar—2,mz—3PT—2,m+2 + Br—2,mZ3Z—3Pr—4,m
into Sy, (but keeping the %Er_l’m+3Z3P7~_2’m part as is), one is left with the sum of the following
groups of terms:
(a) (2Ar,m(2n +r—m-— Q)Br—l,m—i—i% + Cr,mAr—Z,m)Z3Z—3Pr—3,m+3
(b (4Arfl’m+1 + 2Ar7m(2n +r—-—m— 2))Z,1PT,2,m+4
Ar,m(zn +r—-—m-— 2>AT—1,m+3Z—3Pr—2,m+6

c) 2
2(m+2)Z1Pr_gmi2+ Z-1p—1(Preom + 2) + (4Br—1,m41 + Crom) Z-1Z3Pr—3 m41

)
(c)
(d)
(e)
2
§(m +1)Br 1 m1Z2-3Z3P 31+ Br_1m1Z-323p—1(Pr_3/m+1)

+ CrmBr_omZ_32323P _41m

(£) 3(m+4Ar 1 m1Z 3P 2mia+ Artmi1Z-3p-1(Pr_2my4)
(g) %ZIPT—2,m+2 + %Er—l,m+3Z3PT—2,m

In each group, we notice the following identities involving the coefficient terms:
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(a)

8 8
2Ar,m(2n +r—m— Q)Br—l,m—l—ii + Cr,mAr—Q,m = éFr—l,m—l—Z& - gBr—l,m+3

+ Ar—tma1 4B 1mis(2n+ (r = 1) — 1)
+ Br—l,m—l—l . 2Ar_2’m(2n + (7‘ — 2) -m — 2)

(b) 4A; 1 mp1 + 24, m(2n+r—m—2) = =53+ 24, 1 1 (2n+ (r—1)— (m+1) —2)
(c) 24, (2n+r—m—2)A; 1 i3 = _%Ar717m+3+Ar717m+1‘2Arr717m+3(2n+(7‘—1)—(m+3)_2)
(d) 4Br—1ms1+ Crm = 4Br—1my1(2n+ (r—1) — 1)
() CrmBr—2.m = Br_1m+1-4Br—2m(2n+ (r —2) — 1)
(f) leave as is
(g) leave as is
Now,

e The %Fr_1,m+3Z3Z_3PT_37m+3 from (a), added to (g), gives

8 8
§Z1PT—2,m—|—2 + 3 r—1,m+343Pr—2.m + gFr—l,m—l—i&ZSZ—BP —3,m+3s

which is exactly %PT_Lerg by (II) for r — 1.

e The —%Br_l’m+3ZgZ_3Pr_3,m+3 from (a), added to the —%Z_lP,«_g,mH from (b), and
the —%Ar_1,m+3Pr_27m+6 from (c), gives —%Pr_17m+3 by the recurrence formula defining
Pr_1m+3-

e All the terms in (d), added to the 24, 1 p41(2n+ (r—1) = (m+1) —2)Z_1 P,_2 44 from
(b), combine to give Z_1 - Sy_1 m+1, which vanishes by inductive hypothesis.

e All the terms in (e), added to the By_1 m+1 - 24r—am(2n+ (r —2) —m —2)Z3Z_3P,_3 m+3
from (a), combined to give By_1 m+4123Z_3 - Sr—2,m,Which vanishes by inductive hypothesis.

e All the terms in (f), added to the A;—1m41 - 4Br—1me3(2n + (r — 1) — 1)Z3Z_3P,_3 m+3
from (a), added to the A,_1 m+t1 24,1 mi32n+ (r—1) — (m+3) — 2)Z_3P_2 ;16 from
(¢), combine to give Ay_1m+1Z-3 - Sy—1,m+3, which vanishes by inductive hypothesis.

All terms are accounted for in the list above, and we are left with S, ,,, = %P,«_Lerg— %Pr_Lerg =0,
as desired.
Case 2 of (III), m =r —2:
We wish to show
Sppr_2 = %(T —DP 1,14+ pa(Pro1p1) +4Br, 2(2n+1r — 1)(Z3Pr—2,—2) = 0.
Set
C =4Bn, s(2n+7—1)—4Br_1,_s2n+1—2),

so that

2
Syr_2 = §<T — )P 1,1 +p1(Prciyp—1) +4Br_1,302n+ 1 —2)Z3P,_9 9+ CZ3Pr_2 .
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We will plug in the recurrence formula of f.4.6]for P._1, 1 and P,_g, 2 in everything but the last

summand above. For example, using the recurrence formula
P, 1=01P op o+ Er 1, 143P 2,4,

we compute with Lemma [{.4.5]

2 4
p—1(Proip—1) = —§Z1Pr—2,r—2 + 3 3P 0,0+ Zip_1(Pr—2,r—2)
- 2Z3Er71,rflpr72,r74 + ZSErfl,rflpfl(Per,rf4)-

In the end, S, ,_2 is the sum of the following groups of terms:

(a)
2
5(7“ —2)Z1 P p—o0+ Z1ip_1(Pr—gy—2) +4Br_1,—32n+1 —2)Z1Pr_3,_3

(b)

2
g(r —4)Z3Er 1 p 1 Pr2ra+ Z3E 1, 1p-1(Pr—2,—4)
4
+ (§ +C)Z3Pr_9r 2 +4B, 1, 3(2n+1 —2)E, 9, 2237Z3P, 3, 5
Each group vanishes:
(a) This is Z1.S,-1,—3, which vanishes by inductive hypothesis.
(b) We must notice that

B’/‘—l,r—3Er—2,r—2 = Br—l,T—SET—l,r—l

and

4
g +C = Erfl’rfl . 2Ar,1¢,5(2n + (T - 1) - (T - 5) — 2)

to see that these terms can be expressed as
23 _1p-1-Sr—1r-5

which again vanishes by inductive hypothesis.

Therefore we have S,.,_2 = 0, as desired.

Case 3 of (III), m =r — 4:

Note that g

24, ,42n+r—(r—4)—-2) = ~3
so that
2 8
S'r,r—4 = g(r - 3)Pr—1,7"—3 +p—1(Pr—1,r—3) - g r—1,r—1 1 4Br,r—4(2n +r— 1)Z3Pr—2,'r—4-

Set

8
C' = 4BT’T,4(2’I?, +7r— 1) — gErfl,rfl
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so that

2 8
Sr,r74 = g(r - 3)Pr71,r73 +p71(Pr71,7'73) - gprfl,rfl + C,Z3Pr72,r74

8
+ gErfl,r71Z3Pr72,rf4

We plug in the recurrence formulas of definition for P._1,_3 and P,_1,_1 and P,._g,_4 into ev-
erything but the last summand above; note a part of p_1(Z_1P,—2,_2) and the %Er_lvr_lZgPr_gm_Al
will cancel the —% »—1,r—1. In the end, S;.,_4 is the sum of the following groups of terms:

(a)

2

g(r —2)Z P90+ Z_ap_1(Pr1p—2) + 4Br_1,—3+ C')Z_1Z3P,_3,_3
(b)

2
5(7" —3)Z3Z_3Br_1,-3P, 373+ Z3Z_3By_1,—3p—1(Pr_3,-3)
+C'By_9 4237 _3Z3P, 4,4

Each group vanishes:
(a) Noting that
4B, 1,3+ C' =4B,_1,32n+ (r—1) —1),
these terms combine to give Z_1 - S,_1,—3 which vanishes by inductive hypothesis.
(b) Noting that

C/BT—Q,T—ZL = B'r’—l,r—?) : 4Br—2,r—4(2n + (T - 2) - 1)7

these terms combine to give B,_1,_323Z_3 - Sy_2,—4, which vanishes by inductive hypoth-
esis.
Therefore S, ,_4 = 0, as desired. (I) We handle separately the cases m € {—r,—r+2,...,r — 2}
and m=r— 2.
Caselof (I), me {—r,—r+2,...,r—2}
We compute D, ,, via its definition

Dr,m = h—lDr—l,m—i—l + Ar,mh—3Dr—1,m+3 + Br,mh—?)hSDr—Z,m
and inductive hypothesis.
We have by Lemma [4.4.3] (1),

hlerfl,erl(Ww_,z) _ pfl(Pr717m+1t2n+(T_1)+2G—n_(%)‘H) + kfl(Dr717m+1(Ww_ﬁ))
—m

r

= (Z1 P )P TG (o) +2(—n — )+ )Pyt IRG

2

2
+p_q (Pr_17m+1)t2n+(r_1)+2G

—n—(T5m)+1

1
+ @+ (r—1) = () Py 2000426

3 —n—(5")+1
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By Lemma [4.4.4] (2) and Lemma [£.4.3] (4),

h*SDrfl,m+3(Ww_,Z) = _ZS(Prfl,m+3t2n+(r_1)+2G_n_(r—m)+2)

2

r—m

2 ) + 1)Pr—l,m+3t2n+(r_1)+2G

= (—Z3Pr—1,m+3)t2n+r+2G_n_(%) —4(—n —(
By Lemma [1.4.3] (3),

h3Dr72,m(Ww_,Z) = p3(Prf2,mt2n+(r_2)+2G_n_(%)4-1) + k3(Dr72,m(W_n))

w,n

—n—(5")+1"

== —Z_3PT_27mt2n+(r71)+2Gini(%) - 2(2n + (T - 2) + 2)Pr_27mt2n+(riz)+2Gini(%)+1

+2(—n — (%) + V)Pt T CIG
—@2n+(r—2)+ m)PT,g,mt?M(T—?)HG_N_(%)+1
so then by Lemma [4.4.4] (2)
(x)  h_shgDy_gm(W1) = Zgz,gpr,g,mt%”“c:_n_(%)
+4Z3 Py (20 = DEHUTVNG

Collecting terms, we get

Drin(Wip) = Prnt™ 2G| o + (Spm)t*" MG
2

—n— (25241
where S, is

T—m
2

2
g(m"i‘ 1)Pr71,m+1 +p71(Pr71,m+1) +4Ar,m(n+(

and vanishes by Statement (III).
Case 2 of (I), m =1
We use Theorem [4.3.3] (III) and compute in general

) - 1)Pr71,m+3 +4Br,m(2n+r - 1)(Z3P7'72,m)

Dr,m(Wo;Z) = (thr—l,m—l + Er,mh?)Dr—l,m—S + Fr,thh—SDr—Q,m)(WU;Z)
From Lemma (1) and the formula for [f,, D, ;] from Theorem and Lemma (2),

P1Dy—1m-1(Wyn) = p1(Dr—1m—1W5 ) + k1(Dr—1m—1 W, 1)

4 _
= ZlPr—l,m—1t2n+T+2G7nf(%) - g[fs; Dr—Lm—l}Ww,Z

4 _
= Z1Pr—1,m—1t2n+r+2G_n+% — g(Ur—l,m—lDr—l,m—S +Victm—1h—3Dr—2m)W,

4 _
= lerfl,mflt2n+r+2G_n+% - gUrfl,mflprfl,meth—Hr 1)+2G—n—(%)—1

4 _
- §W71,mf1Z3Pr72,mt2"+(T I)HG_”_(%)H
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From Lemma [4.4.3) (2)

haDyr 1m—3(W5 ) = p3(Prfl,mf3t2n+(r_1)+2c_n_(ﬂ)_l) + k3(Dr—1,m—-3(Wy 7))

2

= (Z3P7~_17m_3)t2n+r+2Gini(%) - 2(2n + (T - 1 + 2)P7~_17m_3t2n+(7‘71)+2Gin7(%)71

r—m
2

N 2(_n o ( ) o 1)Pr_l7m_3t2n+(7'71)+2G7n7(%)71
= @n+ (0= 1)+ (= 3) P st OIEG ey

Using also the formula for h_3h3 D9 ,,(W,, 1) from (ED, we get

(thr—l,m—l + Er,thDr—l,m—?) + Fr,mh3h—3D7‘—2,m)<W¢;Z
= (lerfl,mfl + Er,mZ?)Prfl,me + Fr,mZSZfBPer,m)t2n+T+2G_n_(%)
+ (Sl)Pr—l,m—3t2n+(r_1)+2G_n_(ﬂ)_l + (S//)Z3PT_27mt2n+(r—l)+2G

3 —n—(T5m)+1

Where

4
S — <_3U;71—11 +(—4n —2r —2m + 4)Er,m) =0.

and A
S = (31/;"1;1 +4F, m(2n+1r — 1)> =0
so we are left with only

(**) Dr,m(W_n) = (lerfl,mfl + ET,mZ3P7’71,M73 + Fr,mZSZ73Pr72,m)t2n+r+2G_n_(%)

w,n
When m = r, by definition P, = Z1P,_1 -1 + Ey,Z3P,_1 -3 so we are done (note F,., = 0).

(IT)

When —r < m < r, we have on one hand from (I) that

Dr,m(Win) — PTth2n+r+2G7 Crem

w,n

and on the other hand from that
Dr,m(W_n) = (lerfl,mfl + Er,mZ3Pr71,m73 + Fr,mZ?;Z73Pr72,m)t2n+r+2G_n_(%)

w,n

so we are done (note that the K-Bessel functions do not vanish).

5. FINAL STEPS

In this section we finally prove Theorem [£.1.2] and Theorem [£.11] and then Theorem [T.0.2] We

start with a preliminary lemma:

Lemma 5.0.1. Letv € Sym%(VQlong)&l. IfY € p®", then for any smooth function F : G(R) — V,/,
((D"YF,Yv) = Y (F,v).

Proof. We can check this directly, for example on basis elements of p and V,,. O

Lemma 5.0.2. Let L C Sym" (V) be a line. Let

Prp, : Sym2”+T(V2long) X Sym" (V) — Sym2n+T(V2long) X L
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be the Kr-equivariant projection map, unique up to scalar multiple.
Letv € Sym2"(V2[ong) X1. IfY € p®", and satisfies Yv € v' K L with v' € Sym2”+r(V210"g), then
for any smooth function F : G(R) — V,,,

((PrY o D")F,v') = Y (F,v).
up to scalar multiple

Proof. First D"F is valued in

é (SmenJrj (v2long) X Sym’ (VG)> v
j=0

We can orthogonally decompose the top summand relative to Kp:
Sym?™ (V) ® Sym’ (V) = Sym> " (V;"9) K L & Sym>™ " (V;"9) R L+
If Yv € v/ X L, it follows that
((Pr}. o D")F,Yv) =0,
and so
(D"F,Yv) = ((Pry o D")F,v)
and we are done via Lemma [5.0.11 O
Proof of Theorem[{.1.3 Note that Py, and Dy, are defined by the same recurrence relations, and

the line L7!,, in terms of monomials in {(y3), (zsy2), (22ys), (3)} can be read off from the recurrence
relations defining D}’,,. Furthermore,

o Z5(i) = zu;

o Z7(i) = bu/3;

o 79,(i) = —0/3

o 7Y (i) = —Z,.
Therefore,
) 1
P (1) = S Gim, Vi) = Qrn (@)
and the theorem follows from Theorem [4.4.8] (I). O

Proof of Theorem[{.1.1] Both sides of Theorem [£.1.1] are quaternionic. So to test equality we can
pair with an element of z2"1" X L3 ,,. Such an element is given by Dﬁmx%, due to Theorem m
Then since both sides have the same Ny and Ky equivariance properties, we need to check equality

on Ay (R)?. Then, by Lemma this is exactly the content of Theorem O

Proof of Theorem[1.0.4 Suppose w € 2rWg(Q) has pr(w) = p € 2nWg(Q). Then, Q7,,(w) €
(2m)"Q(7), and so by Theorem we can set Dy, = w "(Projl',,)" o D7 to get the desired
algebraicity of Fourier coefficients. O
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